11.求橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的頂點、焦點坐標、長軸長及離心率.

分析 利用橢圓的方程直接求解頂點、焦點坐標、長軸長及離心率.

解答 解:橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的頂點(±5,0)、(0,±4);焦點坐標(±3,0)、長軸長10,離心率e=$\frac{c}{a}$=$\frac{3}{5}$

點評 本題考查橢圓的簡單性質(zhì),是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖:一個圓錐的底面半徑為1,高為3,在其中有一個半徑為x的內(nèi)接圓柱.
(1)試用x表示圓柱的高;
(2)當x為何值時,圓柱的側面積最大,最大側面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=an+2n,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知銳角△ABC中,角A、B、C對應的邊分別為a、b、c,tanA=$\frac{\sqrt{3}bc}{b^2+c^2-a^2}$.
(1)求A的大;
(2)設函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)-cosωx,(ω>0),且f(x)圖象上相領兩最高點間的距離為π,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.記關于x的不等式$\frac{x-a}{x+1}$<0的解集為P,不等式|x-1|≤1的解集為Q.
(1)若a=2,求P;
(2)若x∈Q是x∈P的充分條件,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=$\sqrt{\frac{1}{2}-lgx}$的定義域是(0,$\sqrt{10}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={x∈R|-1<x<1},B={x∈R|(x-2)(x+1)<0},則A∩B=( 。
A.(0,2)B.(-1,1)C.(-∞,-1)∪(2,+∞)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若集合A={x|x2-4x≤0},B={x|x2-2x>0},則A∩B=(2,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.三角形ABC中,a(cosB+cosC)=b+c,
(1)求證A=$\frac{π}{2}$
(2)若三角形ABC的外接圓半徑為1,求三角形ABC周長的取值范圍.

查看答案和解析>>

同步練習冊答案