分析 (1)由余弦定理化簡已知整理可得:(b+c)(a2-b2-c2)=0,由b+c>0,可得a2=b2+c2,即可解得A=$\frac{π}{2}$.
(2)利用正弦定理可得a=2,b+c=2$\sqrt{2}$sin(B+$\frac{π}{4}$),結合范圍0$<B<\frac{π}{2}$,可得2<b+c$≤2\sqrt{2}$,從而可求三角形ABC周長的取值范圍.
解答 解:(1)證明:∵a(cosB+cosC)=b+c,
∴由余弦定理可得:a$•\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$+a$•\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=b+c,
∴整理可得:(b+c)(a2-b2-c2)=0,
∵b+c>0,
∴a2=b2+c2,
∴A=$\frac{π}{2}$,得證.
(2)∵三角形ABC的外接圓半徑為1,A=$\frac{π}{2}$,
∴a=2,
∴b+c=2(sinB+cosB)=2$\sqrt{2}$sin(B+$\frac{π}{4}$),
∵0$<B<\frac{π}{2}$,$\frac{π}{4}$<B+$\frac{π}{4}$<$\frac{3π}{4}$,
∴2<b+c$≤2\sqrt{2}$,
∴4<a+b+c≤2$+2\sqrt{2}$,
∴三角形ABC周長的取值范圍是:(4,2+2$\sqrt{2}$].
點評 本題主要考查了三角函數恒等變換的應用,考查了正弦定理,余弦定理,勾股定理,正弦函數的圖象和性質,屬于基本知識的考查.
科目:高中數學 來源: 題型:選擇題
A. | y=$\sqrt{{x}^{2}-2x+1}$ | B. | y=$\frac{{2}^{x}+2}{{2}^{x}+1}$ | C. | y=$\frac{1}{{x}^{2}+2x-2}$ | D. | y=$\frac{1}{|x+1|}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {(x,y)|(x+1)2+y2≤1} | B. | {(x,y)|x2+y2≤k2} | C. | {(x,y)|(x-1)2+y2≤1} | D. | {(x,y)|(x+1)2+y2≤k2} |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com