【題目】某測(cè)試團(tuán)隊(duì)為了研究“飲酒”對(duì)“駕車安全”的影響,隨機(jī)選取100名駕駛員先后在無(wú)酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測(cè)試.測(cè)試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無(wú)酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表1和表2. 表1

停車距離d(米)

(10,20]

(20,30]

(30,40]

(40,50]

(50,60]

頻數(shù)

26

a

b

8

2

表2

平均每毫升血液酒精含量x毫克

10

30

50

70

90

平均停車距離y米

30

50

60

70

90

已知表1數(shù)據(jù)的中位數(shù)估計(jì)值為26,回答以下問(wèn)題.
(Ⅰ)求a,b的值,并估計(jì)駕駛員無(wú)酒狀態(tài)下停車距離的平均數(shù);
(Ⅱ)根據(jù)最小二乘法,由表2的數(shù)據(jù)計(jì)算y關(guān)于x的回歸方程 ;
(Ⅲ)該測(cè)試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車的平均“停車距離”y大于(Ⅰ)中無(wú)酒狀態(tài)下的停車距離平均數(shù)的3倍,則認(rèn)定駕駛員是“醉駕”.請(qǐng)根據(jù)(Ⅱ)中的回歸方程,預(yù)測(cè)當(dāng)每毫升血液酒精含量大于多少毫克時(shí)為“醉駕”?
(附:對(duì)于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線 的斜率和截距的最小二乘估計(jì)分別為 , .)

【答案】解:(Ⅰ)依題意,得 ,解得a=40, 又a+b+36=100,解得b=24;
故停車距離的平均數(shù)為
(Ⅱ)依題意,可知 ,
= ,

所以回歸直線為
(Ⅲ)由(I)知當(dāng)y>81時(shí)認(rèn)定駕駛員是“醉駕”.
,得0.7x+25>81,解得x>80,)
當(dāng)每毫升血液酒精含量大于80毫克時(shí)認(rèn)定為“醉駕”
【解析】(Ⅰ)根據(jù)中位數(shù)定義得 ,解得a,a+b+36=100,解得b.(Ⅱ)根據(jù) .求出a,b即可.(Ⅲ)令 ,得0.7x+25>81,解得x>80.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A= ,P為△ABC的外心,若 1 +2λ2 ,其中λ1與λ2為實(shí)數(shù),則λ12的最大值為(
A.
B.1﹣
C.
D.1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最小正周期為且圖象關(guān)于直線對(duì)稱.

(1)求的解析式;

(2) 若函數(shù)的圖象與直線上只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面命題正確的是(

A.”是“”的 充 分不 必 要條件

B.命題“若,則”的 否 定 是“ 存 在,則”.

C.設(shè),則“”是“”的必要而不充分條件

D.設(shè),則“”是“”的必要 不 充 分 條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,角θ的終邊經(jīng)過(guò)點(diǎn)P(x,1)(x≥1),則cosθ+sinθ的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)集A由實(shí)數(shù)構(gòu)成:且滿足:若,則

(1)若,試證明A中還有另外兩個(gè)元素;

(2)集合A是否為雙元素集合,并說(shuō)明理由;

(3)若集合A是有限集,求集合A中所有元素的積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線yx2-2x—3與兩條坐標(biāo)軸的三個(gè)交點(diǎn)都在圓C上.若圓C與直線xya=0交于A,B兩點(diǎn),

(1)求圓C的標(biāo)準(zhǔn)方程;

(2)若 O為原點(diǎn)),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2lnx+ ﹣2lna﹣k
(1)若k=0,證明f(x)>0
(2)若f(x)≥0,求k的取值范圍;并證明此時(shí)f(x)的極值存在且與a無(wú)關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.若命題p:?x0∈R,x02﹣x0+1<0,則¬p:?x?R,x2﹣x+1≥0
B.已知相關(guān)變量(x,y)滿足回歸方程 =2﹣4x,若變量x增加一個(gè)單位,則y平均增加4個(gè)單位
C.命題“若圓C:(x﹣m+1)2+(y﹣m)2=1與兩坐標(biāo)軸都有公共點(diǎn),則實(shí)數(shù)m∈[0,1]為真命題
D.已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4﹣a)=0.68

查看答案和解析>>

同步練習(xí)冊(cè)答案