【題目】已知函數(shù)f(x)=2lnx+ ﹣2lna﹣k
(1)若k=0,證明f(x)>0
(2)若f(x)≥0,求k的取值范圍;并證明此時f(x)的極值存在且與a無關(guān).

【答案】
(1)證明:若k=0,f′(x)= =

x∈(0, ),f′(x)≥0,f(x)遞減,

x∈[ ,+∞)時,f′(x)≤0,f(x)遞增,

故f(x)min=f( )=2ln +2﹣2lna=2(1﹣ln2)>0,得證


(2)證明:若f(x)=2lnx+ ﹣2lna﹣k ≥0,

變形得2ln + ≥k ,

=t(t>0),得 ≥k,

g(t)= ,g′(t)= ,

令k(t)=t﹣tlnt﹣1,k′(t)=﹣lnt,

得k(t)=在(0,1]遞增,在(1,+∞)遞減,

故k(t)≤0,g′(t)≤0,

g(t)在(0,+∞)遞減,t→+∞,g(t)→0,

故g(t)>0,k≤0,

下面證明f(x)的極值存在且與a無關(guān),

①k=0,f′(x)= ,f(x)極小值=f( )=2ln +2﹣2lna=2(1﹣ln2)與a無關(guān);

②k<0,f′(x)= ,(其中x1= <0,x2= >0),

故x﹣x1>0且f(x)在x2處取極小值,

f(x2)=2ln + ﹣k ,

∵x2= ,∴ = 是關(guān)于k的函數(shù),(與a無關(guān)),

故f(x2)與a無關(guān)


【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值證明結(jié)論即可;(2)問題轉(zhuǎn)化為2ln + ≥k ,令 =t(t>0),得 ≥k,令g(t)= ,根據(jù)函數(shù)的單調(diào)性證明即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減,以及對函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),已知時,.

(1)畫出偶函數(shù)的圖像;

(2)指出函數(shù)的單調(diào)遞增區(qū)間及值域;

(3)若直線與函數(shù)恰有個交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某測試團(tuán)隊為了研究“飲酒”對“駕車安全”的影響,隨機(jī)選取100名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表1和表2. 表1

停車距離d(米)

(10,20]

(20,30]

(30,40]

(40,50]

(50,60]

頻數(shù)

26

a

b

8

2

表2

平均每毫升血液酒精含量x毫克

10

30

50

70

90

平均停車距離y米

30

50

60

70

90

已知表1數(shù)據(jù)的中位數(shù)估計值為26,回答以下問題.
(Ⅰ)求a,b的值,并估計駕駛員無酒狀態(tài)下停車距離的平均數(shù);
(Ⅱ)根據(jù)最小二乘法,由表2的數(shù)據(jù)計算y關(guān)于x的回歸方程 ;
(Ⅲ)該測試團(tuán)隊認(rèn)為:駕駛員酒后駕車的平均“停車距離”y大于(Ⅰ)中無酒狀態(tài)下的停車距離平均數(shù)的3倍,則認(rèn)定駕駛員是“醉駕”.請根據(jù)(Ⅱ)中的回歸方程,預(yù)測當(dāng)每毫升血液酒精含量大于多少毫克時為“醉駕”?
(附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線 的斜率和截距的最小二乘估計分別為 .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求實(shí)數(shù)的值;

(2)若,試討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖半圓柱OO1的底面半徑和高都是1,面ABB1A1是它的軸截面(過上下底面圓心連線OO1的平面),Q,P分別是上下底面半圓周上一點(diǎn).
(1)證明:三棱錐Q﹣ABP體積VQ﹣ABP ,并指出P和Q滿足什么條件時有AP⊥BQ
(2)求二面角P﹣AB﹣Q平面角的取值范圍,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線C:ρ2﹣2ρcosθ﹣8=0 曲線E: (t是參數(shù))
(1)求曲線C的普通方程,并指出它是什么曲線.
(2)當(dāng)k變化時指出曲線K是什么曲線以及它恒過的定點(diǎn)并求曲線E截曲線C所得弦長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD為正方形,平面AED⊥平面ABCD,AB= EA= ED,EF∥BD
(I)證明:AE⊥CD
(II)在棱ED上是否存在點(diǎn)M,使得直線AM與平面EFBD所成角的正弦值為 ?若存在,確定點(diǎn)M的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個偶數(shù)組成的數(shù)陣排列如下:

2 4 8 14 22 32 …

6 10 16 24 34 … …

12 18 26 36 … … …

20 28 38 … … … …

30 40 … … … … …

42 … … … … … …

… … … … … … …

則第20行第4列的數(shù)為( )

A. 546 B. 540 C. 592 D. 598

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,若存在ak , 使得“ak>ak1且ak>ak+1”成立(其中k≥2,k∈N*),則稱ak為{an}的一個H值.現(xiàn)有如下數(shù)列:①an=1﹣2n;②an=sinn;③an= ④an=lnn﹣n,則存在H值的數(shù)列有( )個.
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案