已知函數(shù)f(x)=
ax-b
x2+1
與函數(shù)g(x)=
1
2
lnx在點(1,0)處有公共的切線.
(1)求函數(shù)f(x)的解析式;
(2)求證:g(x)≥f(x)在x∈[1,+∞)上恒成立.
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值,利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應用
分析:(1)求函數(shù)的導數(shù),根據(jù)導數(shù)的幾何意義即可求函數(shù)f(x)的解析式;
(2)構造函數(shù),求函數(shù)的導數(shù),利用導數(shù)求函數(shù)的最值即可.
解答: 解:(1)由g(1)=0,g′(1)=
1
2
得f(1)=0,f′(1)=
1
2
,
∴f(1)=
a-b
2
=0,化簡得a=b
由f′(x)=
a(x2+1)-2x(ax-b)
(x2+1)2
=
-ax2+2bx+a
(x2+1)2
得:
f′(1)=
-a+2b+a
4
=
1
2
,聯(lián)立解得:a=1,b=1
∴f(x)=
x-1
x2+1

(2)由已知得lnx≥
2x-2
x2+1
在[1,+∞)上恒成立
化簡(x2+1)lnx≥2x-2,
即x2lnx+lnx-2x+2≥0在[1,+∞)上恒成立
設h(x)=x2lnx+lnx-2x+2,
h′(x)=2xlnx+x+
1
x
-2

∵x≥1,
∴2xlnx≥0,x+
1
x
≥2
,即h′(x)>0
∴h(x)在[1,+∞)上單調遞增,
則h(x)≥h(1)=0,
∴g(x)≥f(x)在x∈[1,+∞)上恒成立.
點評:本題主要考查導數(shù)的幾何意義以及導數(shù)的應用,考查學生的運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的一個焦點與拋物線x2=8y的焦點重合,且其漸近線的方程為
3
x±y=0,則該雙曲線的標準方程為(  )
A、
x2
3
-y2=1
B、
y2
3
-x2=1
C、
x2
9
-
y2
16
=1
D、
x2
16
-
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若以曲線y=f(x)上任意一點M(x1,y1)為切點作切線l1,曲線上總存在異于M的點N(x2,y2),以點N為切點做切線L2,且l1∥l2,則稱曲線y=f(x)具有“可平行性”,現(xiàn)有下列命題:
①偶函數(shù)的圖象都具有“可平行性”;
②函數(shù)y=sinx的圖象具有“可平行性”;
③三次函數(shù)f(x)=x3-x2+ax+b具有“可平行性”,且對應的兩切點M(x1,y1),N(x2,y2)的橫坐標滿足x1+x2=
2
3
;
④要使得分段函數(shù)f(x)=
x+
1
x
(x>m)
ex-1(x<0)
的圖象具有“可平行性”,當且僅當實數(shù)m=1.
其中的真命題是
 
(寫出所有命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知遞增的等差數(shù)列{an}滿足a1=1,且a1,a2,a5成等比數(shù)列.
(1)求等差數(shù)列{an}的通項an
(2)設bn=an+2an+1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用三段論證明:直角三角形兩銳角之和為90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
,右焦點為F2(2
2
,0),點A1,A2分別為左、右頂點,點P為此雙曲線在第一象限內的點,設tan∠PA1A2+tan∠PA2F2=m,則有( 。
A、m<2B、m≤2
C、m>2D、m≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一物體在力F(x)=4x+2(力的單位:N)的作用下,沿著與力F相同的方向,從x=0處運動到x=5處(單位:m),則力F(x)所作的功
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,且點A(an,an+1)(n∈N*)在直線y=x+2上,數(shù)列{bn}的前n項和為Sn,且Sn=2bn-2(n∈N*
(Ⅰ)求數(shù)列{an}及{bn}的通項公式;
(Ⅱ)設cn=bnsin2
2
-ancos2
2
(n∈N*),求數(shù)列{cn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某項工程的工作明細表如表:
工作代碼緊前工作工期(天)
A4
BA6
CB3
DC,G10
ED,H4
FA3
GF10
HC,G8
繪制該工程的網(wǎng)絡圖,并寫出最短總工期.

查看答案和解析>>

同步練習冊答案