【題目】已知某海濱浴場海浪的高度y(米)是時(shí)間t(0≤t≤24,單位:時(shí))的函數(shù),記作:.下表是某日各時(shí)的浪高數(shù)據(jù).
t(時(shí)) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)根據(jù)以上數(shù)據(jù),求函數(shù)y=f(t)的函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對(duì)沖浪愛好者開放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8:00時(shí)至晚上20:00時(shí)之間,有多少時(shí)間可供沖浪者進(jìn)行運(yùn)動(dòng)?
【答案】(1); (2)6
【解析】
(1)由表中數(shù)據(jù)可得周期,可得,又可得,解方程組可得,,代值可得,可得解析式;
(2)根據(jù)(1)的解析式, 解不等式,即可得到結(jié)論 .
(1)由表中數(shù)據(jù)描出各點(diǎn),并把這些點(diǎn)用平滑的曲線連接起來(如圖),
由圖知周期,則,解得,由表中數(shù)據(jù)和最值可得,解得,,代點(diǎn)可得,即,由可解得,函數(shù)的解析式為;即為.
(2)由題知,當(dāng)y>1時(shí)才可對(duì)沖浪者開放,
∴ cost+1>1.∴cost>0.
∴2kπ- <t<2kπ+①
即12k-3<t<12k+3(k∈Z).
∵0≤t≤24,故可令①中k分別為0,1,2,
得0≤t<3或9<t<15或21<t≤24.
∴在規(guī)定時(shí)間上午8:00至晚上20:00之間,有6個(gè)小時(shí)的時(shí)間可供沖浪者運(yùn)動(dòng),即上午9:00至下午3:00.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,橢圓上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線 與橢圓交于兩點(diǎn),點(diǎn)(0,1),且=,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把單位正方體的六個(gè)面分別染上6種顏色,并畫上個(gè)數(shù)不同的金雞,各面的顏色與雞的個(gè)數(shù)對(duì)應(yīng)如表:
面上所染顏色 | 紅 | 黃 | 藍(lán) | 青 | 紫 | 綠 |
該面上的金雞個(gè)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
取同樣的4個(gè)上述的單位正方體拼成一個(gè)如圖所示的水平放置的長方體.則這個(gè)長方體的下底面總計(jì)畫有______個(gè)金雞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對(duì)于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價(jià)格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù),其中 是新樣式單車的月產(chǎn)量(單位:件),利潤總收益總成本.
(1)試將自行車廠的利潤元表示為月產(chǎn)量的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在使得成立。
(1)函數(shù)是否屬于集合M?請(qǐng)說明理由;
(2)函數(shù)M,求a的取值范圍;
(3)設(shè)函數(shù),證明:函數(shù)M。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1) 求實(shí)數(shù)的值;
(2) 判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;
(3) 若方程在內(nèi)有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,拋物線y2=2px(p>0)的準(zhǔn)線l與x軸交于點(diǎn)M,過點(diǎn)M的直線與拋物線交于A,B兩點(diǎn),設(shè)A(x1 , y1)到準(zhǔn)線l的距離d=2λp(λ>0)
(1)若y1=d=3,求拋物線的標(biāo)準(zhǔn)方程;
(2)若 +λ = ,求證:直線AB的斜率的平方為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上、下頂點(diǎn)、右頂點(diǎn)、右焦點(diǎn)分別為B2、B1、A、F,延長B1F與AB2交于點(diǎn)P,若∠B1PA為鈍角,則此橢圓的離心率e的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,底面為正方形,四邊形是矩形,平面平面.
(1)求證:平面平面;
(2)若過直線的一個(gè)平面與線段和分別相交于點(diǎn)和 (點(diǎn)與點(diǎn)均不重合),求證: ;
(3)判斷線段上是否存在一點(diǎn),使得平面平面?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com