【題目】已知某海濱浴場海浪的高度y()是時間t(0≤t≤24,單位:時)的函數(shù),記作:.下表是某日各時的浪高數(shù)據(jù).

t()

0

3

6

9

12

15

18

21

24

y()

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

(1)根據(jù)以上數(shù)據(jù),求函數(shù)yf(t)的函數(shù)表達式;

(2)依據(jù)規(guī)定,當海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結論,判斷一天內的上午8:00時至晚上20:00時之間,有多少時間可供沖浪者進行運動?

【答案】(1); (2)6

【解析】

(1)由表中數(shù)據(jù)可得周期,可得,又可得,解方程組可得,代值可得,可得解析式;

(2)根據(jù)(1)的解析式, 解不等式,即可得到結論

(1)由表中數(shù)據(jù)描出各點,并把這些點用平滑的曲線連接起來(如圖),

由圖知周期,則,解得,由表中數(shù)據(jù)和最值可得,解得,,代點可得,即,可解得,函數(shù)的解析式為;即為.

(2)由題知,當y>1時才可對沖浪者開放,

cost+1>1.∴cost>0.

∴2kπ- <t<2kπ+

12k-3<t<12k+3(k∈Z).

∵0≤t≤24,故可令①中k分別為0,1,2,

0≤t<39<t<1521<t≤24.

∴在規(guī)定時間上午8:00至晚上20:00之間,有6個小時的時間可供沖浪者運動,即上午9:00至下午3:00.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,橢圓上任意一點到橢圓兩個焦點的距離之和為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線 與橢圓交于兩點,點(0,1),且=,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把單位正方體的六個面分別染上6種顏色,并畫上個數(shù)不同的金雞,各面的顏色與雞的個數(shù)對應如表

面上所染顏色

該面上的金雞個數(shù)

1

2

3

4

5

6

取同樣的4個上述的單位正方體拼成一個如圖所示的水平放置的長方體.則這個長方體的下底面總計畫有______個金雞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產新樣式的單車,已知生產新樣式單車的固定成本為20000元,每生產一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù),其中 是新樣式單車的月產量(單位:件),利潤總收益總成本.

(1)試將自行車廠的利潤元表示為月產量的函數(shù);

(2)當月產量為多少件時自行車廠的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M是滿足下列性質的函數(shù)的全體:在定義域內存在使得成立。

(1)函數(shù)是否屬于集合M?請說明理由;

(2)函數(shù)M,a的取值范圍;

(3)設函數(shù),證明:函數(shù)M。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1) 求實數(shù)的值;

(2) 判斷并用定義證明該函數(shù)在定義域上的單調性;

(3) 若方程內有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,拋物線y2=2px(p>0)的準線l與x軸交于點M,過點M的直線與拋物線交于A,B兩點,設A(x1 , y1)到準線l的距離d=2λp(λ>0)

(1)若y1=d=3,求拋物線的標準方程;
(2)若 = ,求證:直線AB的斜率的平方為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的上、下頂點、右頂點、右焦點分別為B2、B1、A、F,延長B1FAB2交于點P,若∠B1PA為鈍角,則此橢圓的離心率e的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,底面為正方形,四邊形是矩形,平面平面.

(1)求證:平面平面;

(2)若過直線的一個平面與線段分別相交于點 (點與點均不重合),求證:

(3)判斷線段上是否存在一點,使得平面平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案