【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù),其中 是新樣式單車的月產(chǎn)量(單位:件),利潤總收益總成本.

(1)試將自行車廠的利潤元表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?

【答案】(1);(2)當(dāng)月產(chǎn)量件時,自行車廠的利潤最大,最大利潤為25000元.

【解析】試題分析:(1)根據(jù)利潤總收益總成本寫出利潤與月產(chǎn)量的函數(shù)關(guān)系;(2)根據(jù)分段函數(shù),分別求每段的最大值,分別利用二次函數(shù)和一次函數(shù)知識,注意自變量是自然數(shù),即可求出.

試題解析:

(1)依題設(shè),總成本為,

(2)當(dāng)時, ,

則當(dāng)時,

當(dāng)時, 是減函數(shù),

,

所以,當(dāng)月產(chǎn)量件時,自行車廠的利潤最大,最大利潤為25000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),若存在距離為的兩條直線,使得對任意都有恒成立,則稱函數(shù)有一個寬度為的通道,給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度可以為1的函數(shù)的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

(1)若的定義域為,求實數(shù)的取值范圍;

(2)當(dāng)時,求函數(shù)的最小值;

(3)是否存在非負(fù)實數(shù),使得函數(shù)的定義域為,值域為,若存在,求出的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (R)

(1) ,求函數(shù)的極值;

2)是否存在實數(shù)使得函數(shù)在區(qū)間上有兩個零點(diǎn),若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線,與各有一個交點(diǎn),當(dāng)時,這兩個交點(diǎn)間的距離為2,當(dāng),這兩個交點(diǎn)重合

1分別說明,是什么曲線,并求出的值;

2設(shè)當(dāng)時,,的交點(diǎn)分別為,當(dāng),,的交點(diǎn)分別為,求四邊形的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】線段AB的兩端在直二面角αlβ的兩個面內(nèi),并與這兩個面都成30°角,則異面直線ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠有4臺大型機(jī)器,在一個月中,一臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時需1名工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障需要維修的概率為.

(1)若出現(xiàn)故障的機(jī)器臺數(shù)為,求的分布列;

(2) 該廠至少有多少名工人才能保證每臺機(jī)器在任何時刻同時出現(xiàn)故障時能及時進(jìn)行維修的概率不少于90%?

(3)已知一名工人每月只有維修1臺機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(Ⅰ)若f(1)=0,求函數(shù)fx)的最大值;
(Ⅱ)令,討論函數(shù)gx)的單調(diào)區(qū)間;
(Ⅲ)若a=2,正實數(shù)x1,x2滿足證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面平面,底面為梯

形, , , .且均為正三角形, 的中點(diǎn),

重心.

(1)求證: 平面;

(2)求異面直線的夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案