【題目】在四棱錐中,平面ABCD,是正三角形,AC與BD的交點為M,又,,點N是CD中點.
(1)求證:平面PAD;
(2)求點M到平面PBC的距離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是偶函數(shù).
(1)求的值;
(2)證明:對任意實數(shù),函數(shù)的圖象與直線最多只有一個交點;
(3)設(shè)若函數(shù)的圖象有且只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,離心率為,點是橢圓上的一個動點,且面積的最大值為.
(1)求橢圓的方程;
(2)過點作直線交橢圓于、兩點,過點作直線的垂線交圓:于另一點.若的面積為3,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某城市在2019年1月份至10月份各月最低溫與最高溫(℃)的數(shù)據(jù)表,已知該城市的各月最低溫與最高溫具有相關(guān)關(guān)系,根據(jù)該表,則下列結(jié)論錯誤的是( )
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
最高溫 | 5 | 9 | 9 | 11 | 17 | 24 | 27 | 30 | 31 | 21 |
最低溫 | 1 | 7 | 17 | 19 | 23 | 25 | 10 |
A.最低溫與最高溫為正相關(guān)
B.每月最低溫與最高溫的平均值在前8個月逐月增加
C.月溫差(最高溫減最低溫)的最大值出現(xiàn)在1月
D.1至4月溫差(最高溫減最低溫)相對于7至10月,波動性更大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點是的零點,給出命題:①;②若,則存在,使得;③與所有極值之和一定小于0;④若,且是曲線的一條切線,則的取值范圍是.則以上命題正確序號是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在實數(shù),使成立,則稱為的不動點.
(1)當(dāng),時,求的不動點;
(2)若對于任何實數(shù),函數(shù)恒有兩相異的不動點,求實數(shù)的取值范圍;
(3)在(2)的條件下,若的圖象上、兩點的橫坐標(biāo)是函數(shù)的不動點,且直線是線段的垂直平分線,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若,求曲線與的交點坐標(biāo);
(2)過曲線上任一點作與夾角為30°的直線,交于點,且的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在圓 上,點在圓 上,則下列說法錯誤的是
A. 的取值范圍為
B. 取值范圍為
C. 的取值范圍為
D. 若,則實數(shù)的取值范圍為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com