【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

122

123

124

溫差

11

13

12

發(fā)芽數(shù)(顆)

25

30

26

1)請根據(jù)122日至124日的數(shù)據(jù),求出關(guān)于的線性回歸方程

2)該農(nóng)科所確定的研究方案是:先用上面的3組數(shù)據(jù)求線性回歸方程,再選取2組數(shù)據(jù)進行檢驗.若125日溫差為,發(fā)芽數(shù)16顆,126日溫差為,發(fā)芽數(shù)23顆.由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

注:

【答案】1; 2)研究所得到的線性回歸方程是可靠的.

【解析】

1)由數(shù)據(jù)求得,,求出回歸系數(shù),寫出關(guān)于的線性回歸方程;

2)利用回歸方程計算時對應的函數(shù)值,驗證所得的線性回歸方程是否可靠.

1)由數(shù)據(jù)求得,

,且,

,

,計算,

由公式得,

所以關(guān)于的線性回歸方程是

2)當時,,,

同樣地,當時,,,

所以,該研究所得到的線性回歸方程是可靠的.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為發(fā)揮體育在核心素養(yǎng)時代的獨特育人價值,越來越多的中學已將某些體育項目納入到學生的必修課程,甚至關(guān)系到是否能拿到畢業(yè)證.某中學計劃在高一年級開設(shè)游泳課程,為了解學生對游泳的興趣,某數(shù)學研究性學習小組隨機從該校高一年級學生中抽取了100人進行調(diào)查,其中男生60人,且抽取的男生中對游泳有興趣的占,而抽取的女生中有15人表示對游泳沒有興趣.

(1)試完成下面的列聯(lián)表,并判斷能否有的把握認為“對游泳是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計

男生

女生

合計

(2)已知在被抽取的女生中有6名高一(1)班的學生,其中3名對游泳有興趣,現(xiàn)在從這6名學生中隨機抽取3人,求至少有2人對游泳有興趣的概率.

(3)該研究性學習小組在調(diào)查中發(fā)現(xiàn),對游泳有興趣的學生中有部分曾在市級和市級以上游泳比賽中獲獎,如下表所示.若從高一(8)班和高一(9)班獲獎學生中各隨機選取2人進行跟蹤調(diào)查,記選中的4人中市級以上游泳比賽獲獎的人數(shù)為,求隨機變量的分布列及數(shù)學期望.

班級

市級比賽

獲獎人數(shù)

2

2

3

3

4

4

3

3

4

2

市級以上比賽獲獎人數(shù)

2

2

1

0

2

3

3

2

1

2

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱錐中,底面,,,的中點.

(1)求證:

(2)若二面角的大小為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右頂點分別為,,左、右焦點分別為,離心率為,點,為線段的中點.

)求橢圓的方程.

)若過點且斜率不為的直線與橢圓交于兩點,已知直線相交于點,試判斷點是否在定直線上?若是,請求出定直線的方程;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)將的方程化為普通方程,將的方程化為直角坐標方程;

(Ⅱ)已知直線的參數(shù)方程為,為參數(shù),且,交于點,交于點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】到2020年,我國將全面建立起新的高考制度,新高考采用模式,其中語文、數(shù)學、英語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛好等因素,在思想政治、歷史、地理、物理、化學、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學校采用分層抽樣的方法從高一年級1000名(其中男生550名,女生450名)學生中抽取了名學生進行調(diào)查.

(1)已知抽取的名學生中有女生45名,求的值及抽取的男生的人數(shù).

(2)該校計劃在高一上學期開設(shè)選修中的“物理”和“地理”兩個科目,為了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生進行問卷調(diào)查(假定每名學生在這兩個科目中必須選擇一個科目,且只能選擇一個科目),得到如下列聯(lián)表.

選擇“物理”

選擇“地理”

總計

男生

10

女生

25

總計

(i)請將列聯(lián)表補充完整,并判斷是否有以上的把握認為選擇科目與性別有關(guān)系.

(ii)在抽取的選擇“地理”的學生中按性別分層抽樣抽取6名,再從這6名學生中抽取2名,求這2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四個同樣大小的球,,,兩兩相切,點是球上的動點,則直線與直線所成角的余弦值的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)命題p:實數(shù)m滿足使方程1,其中a0為雙曲線:命題q:實數(shù)m滿足

1)若a1pq為真,求實數(shù)m的取值范圍;

2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案