【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線lm為常數(shù)).

1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;

2)若直線l與曲線C相交于A、B兩點(diǎn),當(dāng)|AB|=4時(shí),求實(shí)數(shù)m的值.

【答案】1)(x12+(y+12=16,x+y4m=0;(2)±.

【解析】

1)由參數(shù)方程、極坐標(biāo)方程與直角坐標(biāo)方程的互化求解即可;

2)由直線與圓的位置關(guān)系,結(jié)合點(diǎn)到直線的距離公式求解即可.

:1)曲線C的參數(shù)方程為θ為參數(shù)),

,消參數(shù)θ可得:

曲線C的普通方程為(x12+(y+12=16

直線l,即ρsinθ+ρcosθ=4m,

結(jié)合可得:

直線l的直角坐標(biāo)方程為x+y4m=0;

2)由題意,圓心到直線的距離d2,

2

m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為,,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為1.

(1)求橢圓的方程;

(2)過(guò) 的直線與橢圓交于不同的兩點(diǎn),,則的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx)=Asinωx)(A0,ω0,0φπ)的部分圖象如圖所示,又函數(shù).

1)求函數(shù)的單調(diào)減區(qū)間;

2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,又,且銳角C滿足,若sinB2sinA,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體ABCDA1B1C1D1中,AA12AB2AD4,過(guò)AA1作平面α使BDα,且平面α平面A1B1C1D1l,Ml.下面給出了四個(gè)命題:這四個(gè)命題中,真命題的個(gè)數(shù)為(

lAC;

BMAC;

lAD1所成的角為60°;

④線段BM長(zhǎng)度的最小值為.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為比較甲,乙兩地某月時(shí)的氣溫,隨機(jī)選取該月中的天,將這天中時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:①甲地該月時(shí)的平均氣溫低于乙地該月時(shí)的平均氣溫;②甲地該月時(shí)的平均氣溫高于乙地該月時(shí)的平均氣溫;③甲地該月時(shí)的氣溫的中位數(shù)小于乙地該月時(shí)的氣溫的中位數(shù);④甲地該月時(shí)的氣溫的中位數(shù)大于乙地該月時(shí)的氣溫的中位數(shù).其中根據(jù)莖葉圖能得到的正確結(jié)論的編號(hào)為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某小學(xué)的期末考試中抽取部分學(xué)生的數(shù)學(xué)成績(jī),由抽查結(jié)果得到如圖的頻率分布直方圖,分?jǐn)?shù)落在區(qū)間,,內(nèi)的頻率之比為

1)求這些學(xué)生的分?jǐn)?shù)落在區(qū)間內(nèi)的頻率;

2)(。┤舨捎梅謱映闃拥姆椒◤姆?jǐn)?shù)落在區(qū)間,內(nèi)抽取4人,求從分?jǐn)?shù)落在區(qū)間,內(nèi)各抽取的人數(shù);

(ⅱ)從上述抽取的4人中再隨機(jī)抽取2人,求這2人全部來(lái)自于區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程;

(2)令,討論的單調(diào)性并判斷有無(wú)極值,若有,求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,其焦點(diǎn)到準(zhǔn)線的距離為2.直線與拋物線交于兩點(diǎn),過(guò)分別作拋物線的切線交于點(diǎn).

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊與直角梯形所在的平面互相垂直,且,,.

1)證明:直線平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案