【題目】如圖,已知等邊與直角梯形所在的平面互相垂直,且,,.

1)證明:直線平面;

2)求直線與平面所成角的正弦值.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)連接交于點(diǎn),連接,則,,則,則平面;

2)解:取中點(diǎn),中點(diǎn),連接,,則,可證平面,則平面,分別以,所在直線為軸,軸,軸建立空間直角坐標(biāo)系,利用平面的法向量與直線的方向向量的夾角的余弦值即可求出答案.

1)證明:連接交于點(diǎn),連接

,,

,

,∴

又∵平面,平面

平面;

2)解:取中點(diǎn),中點(diǎn),連接,,

,

又∵等邊,∴;

∵平面平面,,平面平面平面,

平面,

平面,

分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,

,,,,,

,,,,

設(shè)平面的一個(gè)法向量為,

則由得一個(gè),

設(shè)直線與平面所成角為,

,

∴直線與平面所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線lm為常數(shù)).

1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;

2)若直線l與曲線C相交于A、B兩點(diǎn),當(dāng)|AB|=4時(shí),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù)fx)=exaex+2sinx滿足,則zxlny的最小值是(

A.ln6B.2C.ln6D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)現(xiàn)國(guó)家富強(qiáng).民族復(fù)興.人民幸福是“中國(guó)夢(mèng)”的本質(zhì)內(nèi)涵.某商家計(jì)劃以“全民健身促健康,同心共筑中國(guó)夢(mèng)”為主題舉辦一次有獎(jiǎng)消費(fèi)活動(dòng),此商家先把某品牌乒乓球重新包裝,包裝時(shí)在每個(gè)乒乓球上印上“中”“國(guó)”“夢(mèng)”三個(gè)字樣中的一個(gè),之后隨機(jī)裝盒(14個(gè)球),并規(guī)定:若顧客購(gòu)買的一盒球印的是同一個(gè)字,則此顧客獲得一等獎(jiǎng);若顧客購(gòu)買的一盒球集齊了“中”“國(guó)”二字且僅有此二字,則此顧客獲得二等獎(jiǎng);若顧客購(gòu)買的一盒球集齊了“中”“國(guó)”“夢(mèng)”三個(gè)字,則此顧客獲得三等獎(jiǎng),其它情況不設(shè)獎(jiǎng),則顧客購(gòu)買一盒乒乓球獲獎(jiǎng)的概率是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新《水污染防治法》已由中華人民共和國(guó)第十二屆全國(guó)人民代表大會(huì)常務(wù)委員會(huì)第二十八次會(huì)議于2017627日通過(guò),自201811日起施行.201831日,某縣某質(zhì)檢部門隨機(jī)抽取了縣域內(nèi)100眼水井,檢測(cè)其水質(zhì)總體指標(biāo).

羅斯水質(zhì)指數(shù)

02

24

46

68

810

水質(zhì)狀況

腐敗污水

嚴(yán)重污染

污染

輕度污染

純凈

1)求所抽取的100眼水井水質(zhì)總體指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

2)①由直方圖可以認(rèn)為,100眼水井水質(zhì)總體指標(biāo)值服從正態(tài)分布,利用該正態(tài)分布,求落在(5.215.99)內(nèi)的概率;

②將頻率視為概率,若某鄉(xiāng)鎮(zhèn)抽查5眼水井的水質(zhì),記這5眼水井水質(zhì)總體指標(biāo)值位于(6,10)內(nèi)的井?dāng)?shù)為,求的分布列和數(shù)學(xué)期望.

附:①計(jì)算得所抽查的這100眼水井總體指標(biāo)的標(biāo)準(zhǔn)差為

②若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家政公司對(duì)部分員工的服務(wù)進(jìn)行民意調(diào)查,調(diào)查按各項(xiàng)服務(wù)標(biāo)準(zhǔn)進(jìn)行量化評(píng)分,嬰幼兒保姆部對(duì)4050歲和2030歲各20名女保姆的調(diào)查結(jié)果如下:

分?jǐn)?shù)

年齡

4050

0

2

4

7

7

2030

3

5

5

5

2

1)若規(guī)定評(píng)分不低于80分為優(yōu)秀保姆,試分別估計(jì)這兩個(gè)年齡段保姆的優(yōu)秀率;

2)按照大于或等于80分為優(yōu)秀保姆,80分以下為非優(yōu)秀保姆統(tǒng)計(jì).作出列聯(lián)表,并判斷能否有的把握認(rèn)為對(duì)保姆工作質(zhì)量的評(píng)價(jià)是否優(yōu)秀與年齡有關(guān).

3)從所有成績(jī)?cè)?/span>70分以上的人中按年齡利用分層抽樣抽取10名保姆,再?gòu)倪@10人中選取3人給大家作經(jīng)驗(yàn)報(bào)告,設(shè)抽到4050歲的保姆的人數(shù)為,求出的分布列與期望值.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,直線交橢圓兩點(diǎn),為坐標(biāo)原點(diǎn).

1)若直線過(guò)橢圓的右焦點(diǎn),求的面積;

2)若,試問(wèn)橢圓上是否存在點(diǎn),使得四邊形為平行四邊形?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}為正項(xiàng)等比數(shù)列,a11,數(shù)列{bn}滿足b23,a1b1+a2b2+a3b3+…+anbn3+2n32n

1)求an;

2)求的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,左右頂點(diǎn)分別為,,右焦點(diǎn)為,為橢圓上異于,的動(dòng)點(diǎn),且面積的最大值為.

1)求橢圓的方程;

2)設(shè)直線軸交于點(diǎn),過(guò)點(diǎn)的平行線交軸與點(diǎn),試探究是否存在定點(diǎn),使得以為直徑的圓恒過(guò)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案