【題目】已知為奇函數(shù),為偶函數(shù),且.

1)求的解析式及定義域;

2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)k的范圍;

3)若關(guān)于x的方程有解,求實數(shù)m的取值范圍.

【答案】(1),;(2;(3)

【解析】

1)根據(jù)奇偶性得到方程組,計算得到答案.

2)化簡得到,根據(jù)開口方向和對稱軸計算得到答案.

3)化簡得到,設(shè)計算得到,得到,計算得到答案.

1)因為是奇函數(shù),是偶函數(shù),所以,

因為,①所以用-x取代x代入上式得

,即,②

聯(lián)立①②可得,,

2)因為,所以,

因為函數(shù)在區(qū)間上為單調(diào)函數(shù),所以,

所以所求實數(shù)k的取值范圍為

3)因為,所以.設(shè),

.因為的定義域為,

所以,,,即,則

因為關(guān)于x的方程有解,則

m的取值范圍為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且

(1)判斷函數(shù)的奇偶性;

(2) 判斷函數(shù)(1,+)上的單調(diào)性,并用定義證明你的結(jié)論;

(3),求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題,命題

(1)的充分條件,求實數(shù)的取值范圍;

(2),為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高三一班、二班各有6名學生去參加學校組織的高中數(shù)學競賽選拔考試,成績?nèi)缜o葉圖所示.

(1)若一班、二班6名學生的平均分相同,求值;

(2)若將競賽成績在、內(nèi)的學生在學校推優(yōu)時,分別賦分、2分、3分,現(xiàn)在從一班的6名參賽學生中選兩名,求推優(yōu)時,這兩名學生賦分的和為4分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下判斷正確的是 ( )

A. 函數(shù)上的可導函數(shù),則為函數(shù)極值點的充要條件

B. 若命題為假命題,則命題與命題均為假命題

C. ,則的逆命題為真命題

D. 中,“”是“”的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當, 取得極值,的值;

(Ⅱ)當函數(shù)有兩個極值點,,總有 成立的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】目前,某市出租車的計價標準是:路程以內(nèi)(含按起步價8元收取,超過后的路程按1.9元收取,但超過后的路程需加收的返空費(即單價為

(1)若,將乘客搭乘一次出租車的費用(單位:元)表示為行程(單位)的分段函數(shù);

(2)某乘客行程為,他準備先乘一輛出租車行駛然后再換乘另一輛出租車完成余下路程,請問:他這樣做是否比只乘一輛出租車完成全程更省錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義域為的函數(shù)滿足:對于任意的實數(shù)都有 成立,且當時,

(Ⅰ)判斷函數(shù)的奇偶性,并證明你的結(jié)論;

(Ⅱ)證明上為減函數(shù);

(Ⅲ)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其圖像與軸切于非原點的一點,且該函數(shù)的極小值是,那么切點坐標為______

查看答案和解析>>

同步練習冊答案