【題目】已知函數(shù),其圖像與軸切于非原點的一點,且該函數(shù)的極小值是,那么切點坐標為______.
【答案】(-3,0)
【解析】
設(shè)切點(a,0)(a≠0),f(x)=x(x2+px+q).由題意得:方程x2+px+q=0有兩個相等實根a,故可得f(x)=x(x﹣a)2=x3﹣2ax2+a2x,再利用y極小值=﹣4,可求a=﹣3,從而得到切點.
解:設(shè)切點(a,0)(a≠0),
f(x)=x(x2+px+q),
由題意得:方程x2+px+q=0有兩個相等實根a,
故可得f(x)=x(x﹣a)2=x3﹣2ax2+a2x
f′(x)=3x2﹣4ax+a2=(x﹣a)(3x﹣a),
令f′(x)=0,則x=a或,
∵f(a)=0≠﹣4,
∴f()=﹣4,
于是(a)2=﹣4,
∴a=﹣3,
即有切點為(﹣3,0),
故答案為:(﹣3,0).
科目:高中數(shù)學 來源: 題型:
【題目】已知為奇函數(shù),為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)k的范圍;
(3)若關(guān)于x的方程有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R),若x=﹣1為函數(shù)y=f(x)ex的一個極值點,則下列圖象不可能為y=f(x)的圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們把定義域為且同時滿足以下兩個條件的函數(shù)稱為“函數(shù)”:(1)對任意的,總有;(2)若,,則有成立,下列判斷正確的是( )
A.若為“函數(shù)”,則
B.若為“函數(shù)”,則在上為增函數(shù)
C.函數(shù)在上是“函數(shù)”
D.函數(shù)在上是“函數(shù)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過函數(shù)性質(zhì)的學習,我們知道:“函數(shù)的圖象關(guān)于軸成軸對稱圖形”的充要條件是“為偶函數(shù)”.
(1)若為偶函數(shù),且當時,,求的解析式,并求不等式的解集;
(2)某數(shù)學學習小組針對上述結(jié)論進行探究,得到一個真命題:“函數(shù)的圖象關(guān)于直線成軸對稱圖形”的充要條件是“為偶函數(shù)”.若函數(shù)的圖象關(guān)于直線對稱,且當時,.
(i)求的解析式;
(ii)求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設(shè)點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段的中點的軌跡方程;
(3)過原點的直線交橢圓于兩點,求面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著霧霾的日益嚴重,中國部分省份已經(jīng)實施了“煤改氣”的計劃來改善空氣質(zhì)量指數(shù).2017年支撐我國天然氣市場消費增長的主要資源是國產(chǎn)常規(guī)氣和進口天然氣,資源每年的增量不足以支撐天然氣市場連續(xù)億立方米的年增量.進口LNG和進口管道氣受到接收站、管道能力和進口氣價資源的制約.未來,國產(chǎn)常規(guī)氣產(chǎn)能釋放的紅利將會逐步減弱,產(chǎn)量增量將維持在億方以內(nèi).為了測定某市是否符合實施煤改氣計劃的標準,某監(jiān)測站點于2016年8月某日起連續(xù)天監(jiān)測空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)統(tǒng)計如下:
(1)根據(jù)上圖完成下列表格
空氣質(zhì)量指數(shù)() | |||||
天數(shù) |
(2)計算這天中,該市空氣質(zhì)量指數(shù)的平均數(shù);
(3)若按照分層抽樣的方法,從空氣質(zhì)量指數(shù)在以及的等級中抽取天進行調(diào)研,再從這天中任取天進行空氣顆粒物分析,求恰有天空氣質(zhì)量指數(shù)在上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com