【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PDAD2.

(1)求該四棱錐P-ABCD的表面積和體積;

(2)求該四棱錐P-ABCD內(nèi)切球的表面積.

【答案】(1) S84,,V (2) (2416)π.

【解析】

(1) 四個側(cè)面都是直角三角形,進而求出邊長,即可求得側(cè)面積,底面是正方形,二者相加即可求出表面積,PD⊥平面ABCD故四棱錐的高為,再由棱錐的體積公式求出體積;

(2) 設(shè)內(nèi)切球的半徑為r,球心為O,根據(jù)等體積法求出內(nèi)切球的半徑,則由即可求得半徑,進而求出內(nèi)切球的表面積.

(1) 解:(1)由已知底面ABCD為正方形,PD⊥平面ABCD

,得PDAD,PDAB,ADAB

,∴AB⊥平面PAD,∴PAAB,∴PAPB

同理

S84,,V

2)設(shè)內(nèi)切球的半徑為r,球心為O

則球心O到平面PAB,平面PAD,平面PCB,平面PCD,平面ABCD的距離均為r

可得

.

r2,S(2416)π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式(4kxk212k9)(2x11)>0,其中kR,對于不等式的解集A,記B=AZ(其中Z為整數(shù)集),若集合B是有限集,則使得集合B中元素個數(shù)最少時的實數(shù)k的取值范圍是__.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在實數(shù)m,使得R上的奇函數(shù),則稱是位差值為m位差奇函數(shù)”.

1)判斷函數(shù)是否是位差奇函數(shù),并說明理由;

2)若是位差值為的位差奇函數(shù),求的值;

3)若對于任意,都不是位差值為m的位差奇函數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)是函數(shù)的反函數(shù),解方程

2)當(dāng)時,定義,設(shè),數(shù)列的前n項和為,求;

3)對于任意,其中,當(dāng)能作為一個三角形的三邊長時,也總能作為一個三角形的三邊長,試探究M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)測驗共有10道選擇題每道題共有四個選項,且其中只有一個選項是正確的,評分標(biāo)準(zhǔn)規(guī)定:每選對1道題得5不選或選錯得0,某考試每道都選并能確定其中有6道題能選對其余4道題無法確定正確選項,但這4道題中有2道能排除兩個錯誤選項2題只能排除一個錯誤選項,于是該生做這4道題時每道題都從不能排除的選項中隨機挑選一個選項做答且各題做答互不影響

()求該考生本次測驗選擇題得50分的概率;

()求該考生本次測驗選擇題所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點為,,焦距為,直線:與橢圓相交于,兩點,為弦的中點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線:與橢圓相交于不同的兩點,,,若為坐標(biāo)原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某海濱城市附近海面有一臺風(fēng),據(jù)監(jiān)測,當(dāng)前臺風(fēng)中心位于城市A(看做一點)的東偏南角方向,300 km的海面P處,并以20km / h的速度向西偏北45°方向移動.臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10km / h的速度不斷增大.

(1) 問10小時后,該臺風(fēng)是否開始侵襲城市A,并說明理由;

(2) 城市A受到該臺風(fēng)侵襲的持續(xù)時間為多久?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與直線有且只有一個交點,點P為橢圓C上任一點,,.的最小值為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)直線與橢圓C交于不同兩點AB,點O為坐標(biāo)原點,且,當(dāng)的面積S最大時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展.下表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計表:

年份

2014

2015

2016

2017

2018

銷量(萬臺)

8

10

13

25

24

某機構(gòu)調(diào)查了該地區(qū)30位購車車主的性別與購車種類情況,得到的部分?jǐn)?shù)據(jù)如下表所示:

購置傳統(tǒng)燃油車

購置新能源車

總計

男性車主

6

24

女性車主

2

總計

30

1)求新能源乘用車的銷量關(guān)于年份的線性相關(guān)系數(shù),并判斷是否線性相關(guān);

2)請將上述列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為購車車主是否購置新能源乘用車與性別有關(guān);

3)若以這30名購車車主中購置新能源乘用車的車主性別比例作為該地區(qū)購置新能源乘用車的車主性別比例,從該地區(qū)購置新能源乘用車的車主中隨機選取50,記選到女性車主的人數(shù)為X,X的數(shù)學(xué)期望與方差.

參考公式:,,其中.,若,則可判斷線性相關(guān).

附表:

010

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案