復數(shù)
a+i
2-i
在復平面內(nèi)所對應的點在實軸上,那么實數(shù)a=(  )
A、-2B、0C、1D、2
考點:復數(shù)的代數(shù)表示法及其幾何意義,復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:對所給的進行化簡,由復數(shù)的除法規(guī)則,將復數(shù)化簡成代數(shù)形式,再由題設條件其在復平面上對應的點在實軸上,令虛部為零即可得到參數(shù)的方程,從而解出參數(shù)的值.
解答: 解:復數(shù)
a+i
2-i
=
(a+i)(2+i)
(2-i)(2+i)
=
2a-1+(a+2)i
5

復數(shù)
a+i
2-i
在復平面內(nèi)所對應的點在實軸上,
∴a+2=0,即a=-2.
故選:A.
點評:本題考查復數(shù)的基本概念及復數(shù)的除法運算,解題的關(guān)鍵是熟練掌握復數(shù)的除法運算及準確理解復數(shù)的基本概念,將題設條件正確轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
3-ai
2+3i
為純虛數(shù),則實數(shù)a的值為( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個結(jié)論:
①若命題p:?x0∈R,x02+x0+1<0,則¬p:?x∈R,x2+x+1≥0;
②“(x-3)(x-4)=0”是“x-3=0”的充分而不必要條件;
③若a>0,b>0,a+b=4,則
1
a
+
1
b
的最小值為1.
其中正確結(jié)論的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某旅館有三人間、兩人間、單人間三種房間各一間,有3位成人帶2個小孩來住宿,小孩必須有成人陪同,則不同的住宿方法有(  )
A、18種B、21種
C、27種D、35種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足
y≥1
y≤2x-1
x+y≤m
,若目標函數(shù)z=x-y+1的最小值為0,則m的值為(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為虛數(shù)單位,復數(shù)z=-
1
2
+
3
2
i的共軛復數(shù)為
.
z
,則
.
z
+|z|( 。
A、-
1
2
+
3
2
i
B、
1
2
-
3
2
i
C、
1
2
+
3
2
i
D、-
1
2
-
3
2
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A<30°是cosA>
1
2
的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過橢圓E:
x2
2
+y2=1右焦點且垂直于x軸的直線與橢圓E相交于A,B兩點,直線y=x+n與橢圓E交于C,D兩點,與線段AB相交于點P(與點A和B不重合).
(Ⅰ)若AB平分CD,求CD所在直線方程.
(Ⅱ)四邊形ABCD的面積是否有最大值,如果有,求出其最大面積,如果沒有,請說明理由.

查看答案和解析>>

同步練習冊答案