【題目】在△ABC中,內角AB、C所對的邊分別為a、bc,且sinAsinBcosBsin2BcosA=2 sinCcosB.

(1)求tanB的值;

(2)若△ABC的外接圓半徑為R,求的值.

【答案】(1) tanB=2. (2)

【解析】

1)利用兩角和差公式對式子sinAsinBcosBsin2BcosA=2sinCcosB進行化簡,便可得到結果;

2)利用同角三角函數(shù)關系可得結果.

解:(1)等式sinAsinBcosBsin2BcosA2sinCcosB化簡得,

sinB(sinAcosBcosAsinB)2sinCcosB,

sinBsin(AB)2sinCcosB,

,

sinBsinC2sinCcosB,

sinC≠0,

tanB2.

(2)tanB2,0<B<π

B為銳角,且

,

,

解得:cosB.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】教材曾有介紹:圓上的點處的切線方程為。我們將其結論推廣:橢圓上的點處的切線方程為,在解本題時可以直接應用。已知,直線與橢圓有且只有一個公共點.

(1)求的值;

(2)設為坐標原點,過橢圓上的兩點、分別作該橢圓的兩條切線、,且交于點。當變化時,求面積的最大值;

(3)在(2)的條件下,經(jīng)過點作直線與該橢圓交于兩點,在線段上存在點,使成立,試問:點是否在直線上,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請建立關于的回歸直線方程:

(2)預計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?

附:,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面上定點到定直線的距離,為該平面上的動點,過作直線的垂線,垂足為,且

1)試建立適當?shù)钠矫嬷苯亲鴺讼担髣狱c的軌跡的方程;

2)過點的直線交軌跡兩點,交直線于點,已知,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)的零點構成一個公差為的等差數(shù)列,把函數(shù)的圖像沿軸向左平移個單位,得到函數(shù)的圖像,關于函數(shù),下列說法正確的是(  )

A. 上是增函數(shù)

B. 其圖像關于對稱

C. 函數(shù)是奇函數(shù)

D. 在區(qū)間上的值域為[-2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是一個各位數(shù)字都不是0且沒有重復數(shù)字的三位數(shù),將組成的3個數(shù)字按從小到大排成的三位數(shù)記為,按從大到小排成的三位數(shù)記為,(例如,則,)閱讀如圖所示的程序框圖,運行相應的程序,任意輸入一個,輸出的結果=( )

A. 693 B. 594 C. 495 D. 792

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為積極響應國家“陽光體育運動”的號召,某學校在了解到學生的實際運動情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議。為調查該校學生每周平均體育運動時間的情況,從高一高二基礎年級與高三三個年級學生中按照4:3:3的比例分層抽樣,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時),得到如圖所示的頻率分布直方圖。

(1)據(jù)圖估計該校學生每周平均體育運動時間.并估計高一年級每周平均體育運動時間不足4小時的人數(shù);

(2)規(guī)定每周平均體育運動時間不少于6小時記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有30位高三學生的每周平均體育運動時間不少于6小時,請完成下列列聯(lián)表,并判斷是否有99%的把握認為“該校學生的每周平均體育運動時間是否“優(yōu)秀”與年級有關”.

基礎年級

高三

合計

優(yōu)秀

非優(yōu)秀

合計

300

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:K2,na+b+c+d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC,A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.

()求角C的大小;

()a=2,ABC的面積為,求C的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場使用網(wǎng)箱養(yǎng)殖的方法,收獲時隨機抽取了 100個網(wǎng)箱,測量各箱水產品的產量(單位:),其產量都屬于區(qū)間,按如下形式分成5組,第一組:,第二組:,第三組:,第四組:,第五組:,得到頻率分布直方圖如圖:

定義箱產量在(單位:)的網(wǎng)箱為“低產網(wǎng)箱”, 箱產量在區(qū)間的網(wǎng)箱為“高產網(wǎng)箱”.

(1)若同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,試計算樣本中的100個網(wǎng)箱的產量的平均數(shù);

(2)按照分層抽樣的方法,從這100個樣本中抽取25個網(wǎng)箱,試計算各組中抽取的網(wǎng)箱數(shù);

(3)若在(2)抽取到的“低產網(wǎng)箱”及“高產網(wǎng)箱”中再抽取2箱,記其產量分別,求的概率.

查看答案和解析>>

同步練習冊答案