【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大;
(Ⅱ)若a=2,△ABC的面積為,求C的大小。
【答案】(1)(2)
【解析】試題分析:(1)先根據(jù)正弦定理將邊化為角,再根據(jù)誘導(dǎo)公式化簡得cosC=-,即得角C的大;(2)先根據(jù)三角形面積公式得b,再根據(jù)余弦定理得c.
試題解析:解:(I)在△ABC中,∵2acosC+bcosC+ccosB=0,
∴由正弦定理可得:2sinAcosC+sinBcosC+sinCcosB=0,
∴2sinAcosC+sin(B+C)=0,..
又△ABC中,sin(B+C)=sinA≠0.∴cosC=-,.
∵0<C< .∴C=...
(II)由S=absinC=,a=2,C=得b=1.
由余弦定理得c=4+1-2×2×1×(-)=7,∴c=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是20個(gè)國家和地區(qū)的二氧化碳排放總量及人均二氧化碳排放量.
國家和地區(qū) | 排放總量/千噸 | 人均排放量/噸 | 國家和地區(qū) | 排放總量/千噸 | 人均排放量/噸 | |
A | 10330000 | 7.4 | K | 480000 | 2.0 | |
B | 5300000 | 16.6 | L | 480000 | 7.5 | |
C | 3740000 | 7.3 | M | 470000 | 3.9 | |
D | 2070000 | 1.7 | N | 410000 | 5.3 | |
E | 1800000 | 12.6 | O | 390000 | 16.9 | |
F | 1360000 | 10.7 | P | 390000 | 6.4 | |
G | 840000 | 10.2 | Q | 370000 | 5.7 | |
H | 630000 | 12.7 | R | 330000 | 6.2 | |
I | 550000 | 15.7 | S | 320000 | 6.2 | |
J | 510000 | 2.6 | T | 490000 | 16.6 |
(1)這20個(gè)國家和地區(qū)人均二氧化碳排放量的中位數(shù)是多少?
(2)針對這20個(gè)國家和地區(qū),請你找出二氧化碳排放總量較少的前15%的國家和地區(qū).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求的圖象在處的切線方程;
(Ⅱ)若函數(shù)有兩個(gè)不同零點(diǎn), ,且,求證: ,其中是的導(dǎo)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1) 討論的單調(diào)性;
(2) 設(shè),當(dāng)時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)當(dāng)時(shí),證明:;
(3)設(shè)函數(shù)的圖象與直線的兩個(gè)交點(diǎn)分別為,,的中點(diǎn)的橫坐標(biāo)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)M(0,-1),直線l經(jīng)過點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面側(cè)面,,,,為棱的中點(diǎn),在棱上,面.
(1)求證:為的中點(diǎn);
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列命題的真假:
(1)一次函數(shù)(是非零常數(shù))的圖象一定經(jīng)過點(diǎn);
(2)直角三角形的外心一定在斜邊上;
(3)已知,則是的充要條件;
(4)如果都能被5整除,則也能被5整除.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com