【題目】如圖,在以,,,,,為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.
(1)求證:;
(2)若,,直線與平面所成角為60°,求平面與平面所成銳二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=axex,g(x)=x2+2x+b,若曲線y=f(x)與曲線y=g(x)都過點P(1,c).且在點P處有相同的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)若關于x的不等式k[ef(x)]≥g(x)對任意x∈[﹣1,+∞)恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓上一點處的切線分別交軸軸于點,以為頂點且以為中心的橢圓記作,直線交于兩點.
(1)若橢圓的離心率為,求點坐標;
(2)證明:四邊形的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為2,過右焦點和短軸一個端點的直線的斜率為,為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設斜率為的直線與橢圓相交于兩點,記面積的最大值為,證明:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列滿足n≥2時,,則稱數列(n)為的“L數列”.
(1)若,且的“L數列”為,求數列的通項公式;
(2)若,且的“L數列”為遞增數列,求k的取值范圍;
(3)若,其中p>1,記的“L數列”的前n項和為,試判斷是否存在等差數列,對任意n,都有成立,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某高校全校學生的閱讀情況,隨機調查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.
(1)求這200名學生每周閱讀時間的樣本平均數和中位數(的值精確到0.01);
(2)為查找影響學生閱讀時間的因素,學校團委決定從每周閱讀時間為,的學生中抽取9名參加座談會.你認為9個名額應該怎么分配?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,且以原點為圓心,以短軸長為直徑的圓過點.
(1)求橢圓的標準方程;
(2)若過點的直線與橢圓交于不同的兩點,且與圓沒有公共點,設為橢圓上一點,滿足(為坐標原點),求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在單位圓O:x2+y2=1上任取一點P(x,y),圓O與x軸正向的交點是A,設將OA繞原點O旋轉到OP所成的角為θ,記x,y關于θ的表達式分別為x=f(θ),y=g(θ),則下列說法正確的是( 。
A.x=f(θ)是偶函數,y=g(θ)是奇函數
B.x=f(θ)在為增函數,y=g(θ)在為減函數
C.f(θ)+g(θ)≥1對于恒成立
D.函數t=2f(θ)+g(2θ)的最大值為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com