【題目】在單位圓Ox2+y21上任取一點Px,y),圓Ox軸正向的交點是A,設(shè)將OA繞原點O旋轉(zhuǎn)到OP所成的角為θ,記xy關(guān)于θ的表達式分別為xfθ),ygθ),則下列說法正確的是( 。

A.xfθ)是偶函數(shù),ygθ)是奇函數(shù)

B.xfθ)在為增函數(shù),ygθ)在為減函數(shù)

C.fθ+gθ≥1對于恒成立

D.函數(shù)t2fθ+g2θ)的最大值為

【答案】AC

【解析】

,由題可知,,,根據(jù)正弦函數(shù)和余弦函數(shù)的奇偶性,可判斷選項;

,根據(jù)正弦函數(shù)和余弦函數(shù)的單調(diào)性,可判斷選項;

,先利用輔助角公式可得,再結(jié)合正弦函數(shù)的值域即可得解;

,,,,先對函數(shù)求導,從而可知函數(shù)的單調(diào)性,進而可得當,時,函數(shù)取得最大值,結(jié)合正弦的二倍角公式,代入進行運算即可得解.

解:由題可知,,,即正確;

上為增函數(shù),在上為減函數(shù);上為增函數(shù),即錯誤;

,,,,即正確;

函數(shù),

,則;令,則

函數(shù)上單調(diào)遞增,在上單調(diào)遞減,當,時,函數(shù)取得極大值,為,

又當,時,,所以函數(shù)的最大值為,即錯誤.

故選:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在以,,,,為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.

1)求證:

2)若,,直線與平面所成角為60°,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是等腰梯形,,,是等邊三角形,點上,且

1)證明://平面

2)若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在幾何體中,如圖,四邊形為平行四邊形,,平面平面平面,

1)若三棱錐的體積為1,求

2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國新型冠狀病毒肺炎疫情期間,以網(wǎng)絡(luò)購物和網(wǎng)上服務(wù)所代表的新興消費展現(xiàn)出了強大的生命力,新興消費將成為我國消費增長的新動能.某市為了了解本地居民在20202月至3月兩個月網(wǎng)絡(luò)購物消費情況,在網(wǎng)上隨機對1000人做了問卷調(diào)查,得如下頻數(shù)分布表:

網(wǎng)購消費情況(元)

頻數(shù)

300

400

180

60

60

1)作出這些數(shù)據(jù)的頻率分布直方圖,并估計本市居民此期間網(wǎng)絡(luò)購物的消費平均值;

2)在調(diào)查問卷中有一項是填寫本人年齡,為研究網(wǎng)購金額和網(wǎng)購人年齡的關(guān)系,以網(wǎng)購金額是否超過4000元為標準進行分層抽樣,從上述1000人中抽取200人,得到如下列聯(lián)表,請將表補充完整并根據(jù)列聯(lián)表判斷,在此期間是否有95%的把握認為網(wǎng)購金額與網(wǎng)購人年齡有關(guān).

網(wǎng)購不超過4000

網(wǎng)購超過4000

總計

40歲以上

75

100

40歲以下(含40歲)

總計

200

參考公式和數(shù)據(jù):.(其中為樣本容量)

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四面體ABCD中,ABCBCD均是邊長為1的等邊三角形,已知四面體ABCD的四個頂點都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,在底面上的射影為,于點.

1)求證:平面平面;

2)若,求直線與平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形,且是正三角形,的中點.

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天津市某中學為全面貫徹五育并舉,立德樹人的教育方針,促進學生各科平衡發(fā)展,提升學生綜合素養(yǎng).該校教務(wù)處要求各班針對薄弱學科生成立特色學科興趣學習小組”(每位學生只能參加一個小組),以便課間學生進行相互幫扶.已知該校某班語文數(shù)學英語三個興趣小組學生人數(shù)分別為101015.經(jīng)過一段時間的學習,上學期期中考試中,他們的成績有了明顯進步.現(xiàn)采用分層抽樣的方法從該班的語文,數(shù)學,英語三個興趣小組中抽取7人,對期中考試這三科成績及格情況進行調(diào)查.

1)應從語文,數(shù)學,英語三個興趣小組中分別抽取多少人?

2)若抽取的7人中恰好有5人三科成績?nèi)考案,其?/span>2人三科成績不全及格.現(xiàn)從這7人中隨機抽取4人做進一步的調(diào)查.

①記表示隨機抽取4人中,語文,數(shù)學,英語三科成績?nèi)案竦娜藬?shù),求隨機變量的分布列和數(shù)學期望;

②設(shè)為事件抽取的4人中,有人成績不全及格,求事件發(fā)生的概率.

查看答案和解析>>

同步練習冊答案