【題目】為了了解某高校全校學生的閱讀情況,隨機調查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.
(1)求這200名學生每周閱讀時間的樣本平均數和中位數(的值精確到0.01);
(2)為查找影響學生閱讀時間的因素,學校團委決定從每周閱讀時間為,的學生中抽取9名參加座談會.你認為9個名額應該怎么分配?并說明理由.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,SD=CD=SC=2AB=2BC,平面ABCD⊥底面SDC,AB∥CD,∠ABC=90°,E是SD中點.
(1)證明:直線AE//平面SBC;
(2)點F為線段AS的中點,求二面角F﹣CD﹣S的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線與橢圓有一個相同的焦點,過點且與軸不垂直的直線與拋物線交于,兩點,關于軸的對稱點為.
(1)求拋物線的方程;
(2)試問直線是否過定點?若是,求出該定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C:(a>b>0)經過點(﹣2,0)和,橢圓C上三點A,M,B與原點O構成一個平行四邊形AMBO.
(1)求橢圓C的方程;
(2)若點B是橢圓C左頂點,求點M的坐標;
(3)若A,M,B,O四點共圓,求直線AB的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在以,,,,,為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.
(1)求證:;
(2)若,,直線與平面所成角為60°,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數的極值.
(2),若不等式在上恒成立,求的最大值.
(3)是否存在實數,使得函數在上的值域為?如果存在,請給出證明;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知衡量病毒傳播能力的最重要指標叫做傳播指數RO.它指的是,在自然情況下(沒有外力介入,同時所有人都沒有免疫力),一個感染到某種傳染病的人,會把疾病傳染給多少人的平均數.它的簡單計算公式是:確認病例增長率系列間隔,其中系列間隔是指在一個傳播鏈中,兩例連續(xù)病例的間隔時間(單位:天).根據統(tǒng)計,確認病例的平均增長率為,兩例連續(xù)病例的間隔時間的平均數為天,根據以上RO數據計算,若甲得這種傳染病,則輪傳播后由甲引起的得病的總人數約為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】分形幾何是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學,科赫曲線是比較典型的分形圖形,1904年瑞典數學家科赫第一次描述了這種曲線,因此將這種曲線稱為科赫曲線.其生成方法是:(I)將正三角形(圖(1))的每邊三等分,以每邊三等分后的中間的那一條線段為一邊,向形外作等邊三角形,并將這“中間一段”去掉,得到圖(2);(II)將圖(2)的每邊三等分,重復上述的作圖方法,得到圖(3);(Ⅲ)再按上述方法繼續(xù)做下去……,設圖(1)中的等邊三角形的邊長為1,并且分別將圖(1)、圖(2)、圖(3)、…、圖(n)、…中的圖形依次記作,,,…,,…,設的周長為,則為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四面體ABCD中,△ABC和△BCD均是邊長為1的等邊三角形,已知四面體ABCD的四個頂點都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com