精英家教網 > 高中數學 > 題目詳情

【題目】為了了解某高校全校學生的閱讀情況,隨機調查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.

1)求這200名學生每周閱讀時間的樣本平均數和中位數的值精確到0.01);

2)為查找影響學生閱讀時間的因素,學校團委決定從每周閱讀時間為的學生中抽取9名參加座談會.你認為9個名額應該怎么分配?并說明理由.

【答案】1;(2)每周閱讀時間為的學生中抽取3名,每周閱讀時間為的學生中抽取6名,理由詳見解析.

【解析】

1)利用頻率分布直方圖中的數據直接計算即可

2)利用分層抽樣原理抽取

1)該組數據的平均數

因為,所以中位數

,

解得

2)每周閱讀時間為的學生中抽取3名,每周閱讀時間為的學生中抽取6名.

理由:每周閱讀時間為與每周閱讀時間為是差異明顯的兩層,為保持樣本結構與總體結構的一致性,提高樣本的代表性,

宜采用分層抽樣的方法抽取樣本;因為兩者頻率分別為0.1,0.2,所以按照進行名額分配.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐SABCD中,SDCDSC2AB2BC,平面ABCD⊥底面SDCABCD,∠ABC90°,ESD中點.

1)證明:直線AE//平面SBC;

2)點F為線段AS的中點,求二面角FCDS的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線與橢圓有一個相同的焦點,過點且與軸不垂直的直線與拋物線交于兩點,關于軸的對稱點為.

(1)求拋物線的方程;

(2)試問直線是否過定點?若是,求出該定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C(ab0)經過點(2,0),橢圓C上三點A,M,B與原點O構成一個平行四邊形AMBO.

1)求橢圓C的方程;

2)若點B是橢圓C左頂點,求點M的坐標;

3)若A,M,B,O四點共圓,求直線AB的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在以,,,,為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.

1)求證:;

2)若,,直線與平面所成角為60°,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求函數的極值.

2,若不等式上恒成立,求的最大值.

3)是否存在實數,使得函數上的值域為?如果存在,請給出證明;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知衡量病毒傳播能力的最重要指標叫做傳播指數RO.它指的是,在自然情況下(沒有外力介入,同時所有人都沒有免疫力),一個感染到某種傳染病的人,會把疾病傳染給多少人的平均數.它的簡單計算公式是:確認病例增長率系列間隔,其中系列間隔是指在一個傳播鏈中,兩例連續(xù)病例的間隔時間(單位:天).根據統(tǒng)計,確認病例的平均增長率為,兩例連續(xù)病例的間隔時間的平均數為天,根據以上RO數據計算,若甲得這種傳染病,則輪傳播后由甲引起的得病的總人數約為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】分形幾何是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學,科赫曲線是比較典型的分形圖形,1904年瑞典數學家科赫第一次描述了這種曲線,因此將這種曲線稱為科赫曲線.其生成方法是:(I)將正三角形(圖(1))的每邊三等分,以每邊三等分后的中間的那一條線段為一邊,向形外作等邊三角形,并將這“中間一段”去掉,得到圖(2);(II)將圖(2)的每邊三等分,重復上述的作圖方法,得到圖(3);(Ⅲ)再按上述方法繼續(xù)做下去……,設圖(1)中的等邊三角形的邊長為1,并且分別將圖(1)、圖(2)、圖(3)、…、圖(n)、…中的圖形依次記作,,…,,…,設的周長為,則為( )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四面體ABCD中,ABCBCD均是邊長為1的等邊三角形,已知四面體ABCD的四個頂點都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案