(本小題滿分14分)
如圖,橢圓ab>0)的一個(gè)焦點(diǎn)為F(1,0),且過(guò)點(diǎn)(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動(dòng)弦,直線l:x=4與x軸交于點(diǎn)N,直線AFBN交于點(diǎn)M.
(ⅰ)求證:點(diǎn)M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.
(1)橢圓C方程為.(2)同解析


解法一:
(Ⅰ)由題設(shè)a=2,c=1,從而b2=a2-c2=3,
所以橢圓C方程為.
(Ⅱ)(i)由題意得F(1,0),N(4,0).
設(shè)A(m,n),則B(m,-n)(n0),="1." ……①
AFBN的方程分別為:n(x-1)-(m-1)y=0,
n(x-4)-(m-4)y=0.
設(shè)M(x0,y0),則有 n(x0-1)-(m-1)y0="0," ……②
n(x0-4)+(m-4)y0="0," ……③
由②,③得
x0=.
所以點(diǎn)M恒在橢圓G上.

(ⅱ)設(shè)AM的方程為x=xy+1,代入=1得(3t2+4)y2+6ty-9=0.
設(shè)A(x1,y1),Mx2,y2),則有:y1+y2=
|y1-y2|=
令3t2+4=λ(λ≥4),則
|y1-y2|=
因?yàn)棣恕?,0<
|y1-y2|有最大值3,此時(shí)AM過(guò)點(diǎn)F.
AMN的面積SAMN=
解法二:
(Ⅰ)問(wèn)解法一:
(Ⅱ)(。┯深}意得F(1,0),N(4,0).
設(shè)A(m,n),則B(m,-n)(n≠0),              ……①
AFBN的方程分別為:n(x-1)-(m-1)y="0,                 " ……②
n(x-4)-(m-4)y="0,                 " ……③
由②,③得:當(dāng).         ……④
由④代入①,得=1(y≠0).
當(dāng)x=時(shí),由②,③得:
解得與a≠0矛盾.
所以點(diǎn)M的軌跡方程為即點(diǎn)M恒在錐圓C上.
(Ⅱ)同解法一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本大題滿分14分)如圖,F(xiàn)為雙曲線C:的右焦點(diǎn)。P為雙曲線C右支上一點(diǎn),且位于軸上方,M為左準(zhǔn)線上一點(diǎn),為坐標(biāo)原點(diǎn)。已知四邊形為平行四邊形,。
(Ⅰ)寫(xiě)出雙曲線C的離心率的關(guān)系式;
(Ⅱ)當(dāng)時(shí),經(jīng)過(guò)焦點(diǎn)F且品行于OP的直線交雙曲線于A、B點(diǎn),若,求此時(shí)的雙曲線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)點(diǎn)是曲線上的點(diǎn),又點(diǎn),下列結(jié)
論正確的是                                              (   )
A..B..
C..D..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若橢圓與拋物線有公共點(diǎn),則實(shí)數(shù)a的取值范圍是_____________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知定點(diǎn)和直線,過(guò)定點(diǎn)F與直線相切的動(dòng)圓圓心為點(diǎn)C。(1)求動(dòng)點(diǎn)C的軌跡方程;  (2)過(guò)點(diǎn)F在直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線沒(méi)有公共點(diǎn),則過(guò)點(diǎn)的一條直線與橢圓的公共點(diǎn)的個(gè)數(shù)是                                               (   )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓與雙曲線的焦點(diǎn)相同,則        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的焦點(diǎn)為,過(guò)F2垂直于x軸的直線交橢圓于一點(diǎn)P,那么|PF1|的值是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線與曲線
為參數(shù),)有兩個(gè)公共點(diǎn)A,B,且|AB|=2,則實(shí)數(shù)a的值為          ;在此條件下,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正方向?yàn)闃O軸建立坐標(biāo)系,則曲線C的極坐標(biāo)方程為            .

查看答案和解析>>

同步練習(xí)冊(cè)答案