已知△ABC的三內(nèi)角A,B,C所對三邊分別為a,b,c,且cos(
π
4
-A)=
2
10

(Ⅰ)求sinA的值;
(Ⅱ)若△ABC的面積S=12,b=6,求a的值.
考點(diǎn):余弦定理
專題:解三角形
分析:(Ⅰ)利用同角的三角函數(shù)關(guān)系即可求sinA的值;
(Ⅱ)根據(jù)△ABC的面積公式,以及余弦定理即可求a的值.
解答: 解:(Ⅰ)由cos(
π
4
-A)=
2
10
2
2
(sinA+cosA)=
2
10
,
sinA+cosA=
1
5

又sin2A+cos2A=1
解得sinA=
4
5

(Ⅱ)∵△ABC的面積S=12,
S=
1
2
bcsinA=12
,
又b=6,解得c=5,
sinA+cosA=
1
5
,sinA=
4
5
,
cosA=-
3
5

a2=b2+c2-2bccosA=36+25-2×6×5×(-
3
5
)=97
,
a=
97
點(diǎn)評:本題主要考查三角函數(shù)的函數(shù)值的計算,利用同角的關(guān)系式以及余弦定理是解決本題的關(guān)鍵,考查學(xué)生的計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,且(a2+b2)sin(A-B)=(a2+b2)sin(A+B),則△ABC是( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用三角函數(shù)的單調(diào)性,比較下列各組數(shù)的大。
(1)sin610°與sin980°
(2)cos515°與cos890°
(3)tan
75
11
π與tan(-
58
11
π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊經(jīng)過點(diǎn)P(
3
,3).若函數(shù)f(x)=2sinα•cos2ωx+4cosα•sinωx•cosωx的圖象關(guān)于直線x=
π
2
對稱,其中ω為常數(shù),且ω∈(0,1).
(1)求f(x)的表達(dá)式及其最小正周期;
(2)若將y=f(x)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="93jsrky" class="MathJye">
1
6
,再將所得圖象向右平移
π
3
個單位,縱坐標(biāo)不變,得到y(tǒng)=h(x)的圖象,設(shè)函數(shù)g(x)對任意x∈R,有g(shù)(x+
π
2
)=g(x),且當(dāng)x∈[0,
π
2
]時,g(x)=
1
2
-h(x),求函數(shù)g(x)在[-π,0]上的解析式.
(3)設(shè)(2)中所求得函數(shù)g(x),可使不等式g2(x)+4g(x)-a≥2x對任意x∈[-
π
12
,0]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡方程:log4(4x+1)-
1
2
x=log4(a•2x-
4
3
a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2
和g(x)=5x+2,求f(3),f(a+1),f(g(x))的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(4x+
π
4
)+cos(4x-
π
4
).
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)若直線x=m是曲線y=f(x)的對稱軸,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(cosx,-1),
n
=(sinx,-
3
2
),f(x)=(
m
-
n
)•
m
..
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)已知銳角△ABC中角A,B,C的對邊分別為a,b,c.其面積S=
3
,f(A-
π
8
)=-
2
4
,a=3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,E、F分別是AB、B1C的中點(diǎn),則EF與平面ABCD所成的角的正切值為
 

查看答案和解析>>

同步練習(xí)冊答案