【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.
(1)求及的值;
(2)求函數(shù)在上的解析式;
(3)若關(guān)于的方程有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
【答案】(1)0,-1;(2);(3)
【解析】
(1)根據(jù)題意,由函數(shù)的解析式,將代入函數(shù)解析式即可得的值,同理可得的值,利用函數(shù)的奇偶性分析可得的值;(2)設(shè),則,由函數(shù)的解析式分析的解析式,進(jìn)而由函數(shù)的奇偶性分析可得答案;(3)若方程有四個(gè)不同的實(shí)數(shù)解,則函數(shù)與直線(xiàn)有4個(gè)交點(diǎn),作出函數(shù)的圖象,由數(shù)形結(jié)合法分析即可得答案.
(1)根據(jù)題意,當(dāng)時(shí),,則,
,
又由函數(shù)為偶函數(shù),則,
則;
(2)設(shè),則,
則有,
又由函數(shù)為偶函數(shù),則,
則當(dāng)時(shí),,
(3)若方程有四個(gè)不同的實(shí)數(shù)解,則函數(shù)與直線(xiàn)有4個(gè)交點(diǎn),
而的圖象如圖:
,
分析可得,故的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,函數(shù)在區(qū)間上的最大值是,最小值是,求的值;
(2)用定義法證明在其定義域上是減函數(shù);
(3)設(shè), 若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體中,為正方形,,二面角的余弦值為,且.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動(dòng)點(diǎn),的最大值為1.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(與不重合),則直線(xiàn)與軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年3月智能共享單車(chē)項(xiàng)目正式登陸某市,兩種車(chē)型“小綠車(chē)”、“小黃車(chē)”采用分時(shí)段計(jì)費(fèi)的方式,“小綠車(chē)”每30分鐘收費(fèi)元不足30分鐘的部分按30分鐘計(jì)算;“小黃車(chē)”每30分鐘收費(fèi)1元不足30分鐘的部分按30分鐘計(jì)算有甲、乙、丙三人相互獨(dú)立的到租車(chē)點(diǎn)租車(chē)騎行各租一車(chē)一次設(shè)甲、乙、丙不超過(guò)30分鐘還車(chē)的概率分別為,,,三人租車(chē)時(shí)間都不會(huì)超過(guò)60分鐘甲、乙均租用“小綠車(chē)”,丙租用“小黃車(chē)”.
求甲、乙兩人所付的費(fèi)用之和等于丙所付的費(fèi)用的概率;
2設(shè)甲、乙、丙三人所付的費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知參加某項(xiàng)活動(dòng)的六名成員排成一排合影留念,且甲乙兩人均在丙領(lǐng)導(dǎo)人的同側(cè),則不同的排法共有( )
A. 240種 B. 360種 C. 480種 D. 600種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,、分別為、的中點(diǎn),,,如圖.
(1)若交平面于點(diǎn),證明:、、三點(diǎn)共線(xiàn);
(2)線(xiàn)段上是否存在點(diǎn),使得平面平面,若存在確定的位置,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C:離心率為,其短軸長(zhǎng)為2.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,A為橢圓C的左頂點(diǎn),P,Q為橢圓C上兩動(dòng)點(diǎn),直線(xiàn)PO交AQ于E,直線(xiàn)QO交AP于D,直線(xiàn)OP與直線(xiàn)OQ的斜率分別為,,且, ,(為非零實(shí)數(shù)),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com