【題目】2017年3月智能共享單車項目正式登陸某市,兩種車型“小綠車”、“小黃車”采用分時段計費的方式,“小綠車”每30分鐘收費元不足30分鐘的部分按30分鐘計算;“小黃車”每30分鐘收費1元不足30分鐘的部分按30分鐘計算有甲、乙、丙三人相互獨立的到租車點租車騎行各租一車一次設(shè)甲、乙、丙不超過30分鐘還車的概率分別為,,,三人租車時間都不會超過60分鐘甲、乙均租用“小綠車”,丙租用“小黃車”.
求甲、乙兩人所付的費用之和等于丙所付的費用的概率;
2設(shè)甲、乙、丙三人所付的費用之和為隨機變量,求的分布列和數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立.
求甲在4局以內(nèi)(含4局)贏得比賽的概率;
記為比賽決出勝負時的總局數(shù),求的分布列和均值(數(shù)學期望).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲,乙兩個抽獎方案供員工選擇. 方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率均為 ,第一次抽獎,若未中獎,則抽獎結(jié)束,若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則所獲得獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為 ,每次中獎均可獲得獎金400元.
(Ⅰ)求某員工選擇方案甲進行抽獎所獲獎金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進行抽獎,哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是 ( )
①相關(guān)系數(shù)用來衡量兩個變量之間線性關(guān)系的強弱, 越接近于,相關(guān)性越弱;
②回歸直線一定經(jīng)過樣本點的中心;
③隨機誤差滿足,其方差的大小用來衡量預(yù)報的精確度;
④相關(guān)指數(shù)用來刻畫回歸的效果, 越小,說明模型的擬合效果越好.
A. ①② B. ③④ C. ①④ D. ②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某零售店近5個月的銷售額和利潤額資料如下表:
商店名稱 | |||||
銷售額/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)關(guān)系;
(2)用最小二乘法計算利潤額關(guān)于銷售額的回歸直線方程;
(3)當銷售額為4千萬元時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).
[參考公式:,]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓:相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com