【題目】已知函數(shù),其中為大于零的常數(shù)

1時,求函數(shù)的單調區(qū)間;

2求函數(shù)在區(qū)間上的最小值;

3求證:對于任意的時,都有成立

【答案】1的增區(qū)間為,減區(qū)間為

2時,,時,時,

3證明見解析

【解析】

試題分析:1先確定函數(shù)的定義域然后求導數(shù),在函數(shù)的定義域內解不等式;2研究閉區(qū)間上的最值問題,先求出函數(shù)的極值,比較極值和端點處的函數(shù)值的大小,最后確定出最小值;31知函數(shù)上為增函數(shù),構造的遞推關系,可利用疊加法求出所需結論

試題解析:1時,,由;由,

的增區(qū)間為,減區(qū)間為

2,

時,上恒成立,這是上為增函數(shù),;

上恒成立,遞減,,

時,令,得,由;

所以上遞減,在上遞增,有,

綜上,上的最小值為:時,

時,;時,

31知函數(shù)為遞增函數(shù),

所以當時,有恒成立,

所以

,所以,對時,都有成立

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足: .

1)求;

2)設,求數(shù)列的通項公式;

3)設,不等式恒成立時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為為參數(shù)).

(1)直線且與曲線相切,求直線的極坐標方程;

(2)點與點關于軸對稱,求曲線 上的點到點的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側面是矩形,,,且.

(1)求證:平面平面

(2)設的中點,判斷并證明在線段上是否存在點,使平面,若存在,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中,放有標號分別為,的四個大小相同的小球,現(xiàn)從這個盒子中,有放回地先后取得兩個小球,其標號分別為,

1)求事件的概率;

(2)求事件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形的兩條對角線相交于點 邊所在直線的方程為,點邊所在的直線上.

(Ⅰ)求邊所在直線的方程;

(Ⅱ)求矩形外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌茶壺的原售價為80元一個,今有甲、乙兩家茶具店銷售這種茶壺,甲店用如下的方法促銷:如果只購買一只茶壺,其價格為78元/個;如果一次購買兩個茶壺,其價格為76元/個;;如果一次購買的茶壺數(shù)每增加一個,那么茶壺的價格減少2元/個,但茶壺的售價不得低于44元/個。乙店一律按原價的75%銷售,F(xiàn)某茶社要購買這種茶壺個,如果全部在甲店購買,則所需金額為元;如果全部在乙店購買,則所需金額為元。

(1)分別求出之間的函數(shù)關系式。

(2)該茶社去哪家茶具店購買茶壺花費較少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位有、三個工作點,需要建立一個公共無線網(wǎng)絡發(fā)射點,使得發(fā)射點到三個工作點的距離相等.已知這三個工作點之間的距離分別為,.假定、、四點在同一平面內.

)求的大。

)求點到直線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班倡議假期每位學生至少閱讀一本名著,為了解學生的閱讀情況,對該班所有學生進行了調查調查結果如下表:

閱讀名著的本數(shù)

1

2

3

4

5

男生人數(shù)

3

1

2

1

3

女生人數(shù)

1

3

3

1

2

1試根據(jù)上述數(shù)據(jù),求這個班級女生閱讀名著的平均本數(shù);

2若從閱讀本名著的學生中任選人交流讀書心得,求選到男生和女生各人的概率;

3試比較該班男生閱讀名著本數(shù)的方差與女生閱讀名著本數(shù)的方差的大小只需寫出結論).

查看答案和解析>>

同步練習冊答案