【題目】在一個(gè)不透明的盒子中,放有標(biāo)號(hào)分別為,,,的四個(gè)大小相同的小球,現(xiàn)從這個(gè)盒子中,有放回地先后取得兩個(gè)小球,其標(biāo)號(hào)分別為,

1)求事件的概率;

(2)求事件的概率.

【答案】(1);(2).

【解析】

試題分析:(1)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是從盒子中有放回地先后抽取兩張卡片列舉出來共包含基本事件個(gè),滿足條件的事件根據(jù)前面列舉出的事件,得到有個(gè)結(jié)果,根據(jù)概率公

式得到概率;(2)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是從盒子中有放回地先后抽取兩張卡片列舉出來共包含基本事件個(gè),滿足條件的事件數(shù)可以通過前面的列舉得到,根據(jù)等可能事件的概率得到結(jié)果.

試題解析:取值有,,,,,,,,,,,共16種.

(1)其中的有4種,

所以

(2),所以時(shí),有,兩種.

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】pH值是水溶液的重要理化參數(shù)。若溶液中氫離子的濃度為[H](單位:mol/l),則其pH值為-lg[H]。在標(biāo)準(zhǔn)溫度和氣壓下,若水溶液pH=7,則溶液為中性,pH<7時(shí)為酸性,pH>7時(shí)為堿性。例如,甲溶液中氫離子濃度為0.0001mol/l,其pH為-1g 0.0001,即pH=4。已知乙溶液的pH=2,則乙溶液中氫離子濃度為______mol/l。若乙溶液中氫離子濃度是丙溶液的兩千萬倍,則丙溶液的酸堿性為______(填中性、酸性或堿性)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓外的有一點(diǎn),過點(diǎn)作直線.

(1)當(dāng)直線過圓心時(shí),求直線的方程;

(2)當(dāng)直線與圓相切時(shí),求直線的方程;

(3)當(dāng)直線的傾斜角為時(shí),求直線被圓所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5分鐘,生產(chǎn)一個(gè)騎兵需7分鐘,生產(chǎn)一個(gè)傘兵需4分鐘,已知總生產(chǎn)時(shí)間不超過10小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤5元,生產(chǎn)一個(gè)騎兵可獲利潤6元,生產(chǎn)一個(gè)傘兵可獲利潤3元.

(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)與騎兵個(gè)數(shù)表示每天的利潤(元);

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)是否存在實(shí)數(shù),使函數(shù)上有最小值2?若存在,求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為大于零的常數(shù)

1當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2求函數(shù)在區(qū)間上的最小值;

3求證:對(duì)于任意的時(shí),都有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個(gè)表面積最大的長(zhǎng)方體;第二次切削沿長(zhǎng)方體的對(duì)角面刨開,得到兩個(gè)三棱柱;第三次切削將兩個(gè)三棱柱分別沿棱和表面的對(duì)角線刨開得到兩個(gè)鱉臑和兩個(gè)陽馬,則陽馬與鱉臑的體積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

(1)求證對(duì)任意實(shí)數(shù),該圓恒過一定點(diǎn);

(2)若該圓與圓切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在與橢圓交于兩點(diǎn)的直線,使得成立?若存在,求出實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案