【題目】某品牌茶壺的原售價(jià)為80元一個(gè),今有甲、乙兩家茶具店銷(xiāo)售這種茶壺,甲店用如下的方法促銷(xiāo):如果只購(gòu)買(mǎi)一只茶壺,其價(jià)格為78元/個(gè);如果一次購(gòu)買(mǎi)兩個(gè)茶壺,其價(jià)格為76元/個(gè);…;如果一次購(gòu)買(mǎi)的茶壺?cái)?shù)每增加一個(gè),那么茶壺的價(jià)格減少2元/個(gè),但茶壺的售價(jià)不得低于44元/個(gè)。乙店一律按原價(jià)的75%銷(xiāo)售,F(xiàn)某茶社要購(gòu)買(mǎi)這種茶壺個(gè),如果全部在甲店購(gòu)買(mǎi),則所需金額為元;如果全部在乙店購(gòu)買(mǎi),則所需金額為元。
(1)分別求出、與之間的函數(shù)關(guān)系式。
(2)該茶社去哪家茶具店購(gòu)買(mǎi)茶壺花費(fèi)較少?
【答案】(1),(2)當(dāng)茶社購(gòu)買(mǎi)這種茶壺的數(shù)量小于10個(gè)時(shí),到乙茶具店購(gòu)買(mǎi)茶壺費(fèi)較少,當(dāng)茶社購(gòu)買(mǎi)數(shù)量為10個(gè)時(shí),費(fèi)用一樣,當(dāng)茶社購(gòu)買(mǎi)這種茶具的數(shù)量大于10個(gè)時(shí),到甲茶具店購(gòu)買(mǎi)茶壺的費(fèi)用較少
【解析】
試題分析:(1)根據(jù)甲店茶壺的售價(jià)不得低于44元/個(gè)可知甲店購(gòu)買(mǎi)所需金額為一個(gè)分段函數(shù),若全部在乙店購(gòu)買(mǎi),則所需金額為一個(gè)一次函數(shù);(2)先求出茶具店購(gòu)買(mǎi)茶壺花費(fèi)y一樣時(shí)所買(mǎi)茶壺個(gè)數(shù),然后分段可知該茶社去哪家茶具店購(gòu)買(mǎi)茶壺花費(fèi)較少
試題解析:(1)解: 與之間的函數(shù)關(guān)系式: (4分)
與之間的函數(shù)關(guān)系式: (6分)
(2)
解得
所以,當(dāng)茶社購(gòu)買(mǎi)這種茶壺的數(shù)量小于10個(gè)時(shí),到乙茶具店購(gòu)買(mǎi)茶壺費(fèi)較少,當(dāng)茶社購(gòu)買(mǎi)數(shù)量為10個(gè)時(shí),費(fèi)用一樣,當(dāng)茶社購(gòu)買(mǎi)這種茶具的數(shù)量大于10個(gè)時(shí),到甲茶具店購(gòu)買(mǎi)茶壺的費(fèi)用較少。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,底面為矩形,側(cè)面底面,,,.
(1)證明:;
(2)設(shè)與平面所成的角為,求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5分鐘,生產(chǎn)一個(gè)騎兵需7分鐘,生產(chǎn)一個(gè)傘兵需4分鐘,已知總生產(chǎn)時(shí)間不超過(guò)10小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn)5元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)6元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)3元.
(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)與騎兵個(gè)數(shù)表示每天的利潤(rùn)(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為大于零的常數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值;
(3)求證:對(duì)于任意的時(shí),都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1,圖中粗線畫(huà)出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個(gè)表面積最大的長(zhǎng)方體;第二次切削沿長(zhǎng)方體的對(duì)角面刨開(kāi),得到兩個(gè)三棱柱;第三次切削將兩個(gè)三棱柱分別沿棱和表面的對(duì)角線刨開(kāi)得到兩個(gè)鱉臑和兩個(gè)陽(yáng)馬,則陽(yáng)馬與鱉臑的體積之比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè)是函數(shù)的極值點(diǎn),求并討論的單調(diào)性;
(2)設(shè)是函數(shù)的極值點(diǎn),且恒成立,求的取值范圍(其中常數(shù)滿足).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.
(1)求證:對(duì)任意實(shí)數(shù),該圓恒過(guò)一定點(diǎn);
(2)若該圓與圓外切,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線 的參數(shù)方程為(為參數(shù)).
(1)直線過(guò)且與曲線相切,求直線的極坐標(biāo)方程;
(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有20名學(xué)生參加某次考試,成績(jī)(單位:分)的頻率分布直方圖如圖所示:
(Ⅰ)求頻率分布直方圖中的值;
(Ⅱ)分別求出成績(jī)落在中的學(xué)生人數(shù);
(Ⅲ)從成績(jī)?cè)?/span>的學(xué)生中任選2人,求所選學(xué)生的成績(jī)都落在中的概率
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com