【題目】某品牌茶壺的原售價(jià)為80元一個(gè),今有甲、乙兩家茶具店銷(xiāo)售這種茶壺,甲店用如下的方法促銷(xiāo):如果只購(gòu)買(mǎi)一只茶壺,其價(jià)格為78元/個(gè);如果一次購(gòu)買(mǎi)兩個(gè)茶壺,其價(jià)格為76元/個(gè);;如果一次購(gòu)買(mǎi)的茶壺?cái)?shù)每增加一個(gè),那么茶壺的價(jià)格減少2元/個(gè),但茶壺的售價(jià)不得低于44元/個(gè)。乙店一律按原價(jià)的75%銷(xiāo)售,F(xiàn)某茶社要購(gòu)買(mǎi)這種茶壺個(gè),如果全部在甲店購(gòu)買(mǎi),則所需金額為元;如果全部在乙店購(gòu)買(mǎi),則所需金額為元。

(1)分別求出、之間的函數(shù)關(guān)系式。

(2)該茶社去哪家茶具店購(gòu)買(mǎi)茶壺花費(fèi)較少?

【答案】(1)(2)當(dāng)茶社購(gòu)買(mǎi)這種茶壺的數(shù)量小于10個(gè)時(shí),到乙茶具店購(gòu)買(mǎi)茶壺費(fèi)較少,當(dāng)茶社購(gòu)買(mǎi)數(shù)量為10個(gè)時(shí),費(fèi)用一樣,當(dāng)茶社購(gòu)買(mǎi)這種茶具的數(shù)量大于10個(gè)時(shí),到甲茶具店購(gòu)買(mǎi)茶壺的費(fèi)用較少

【解析】

試題分析:(1)根據(jù)甲店茶壺的售價(jià)不得低于44元/個(gè)可知甲店購(gòu)買(mǎi)所需金額為一個(gè)分段函數(shù),若全部在乙店購(gòu)買(mǎi),則所需金額為一個(gè)一次函數(shù);(2)先求出茶具店購(gòu)買(mǎi)茶壺花費(fèi)y一樣時(shí)所買(mǎi)茶壺個(gè)數(shù),然后分段可知該茶社去哪家茶具店購(gòu)買(mǎi)茶壺花費(fèi)較少

試題解析:(1)解: 之間的函數(shù)關(guān)系式: (4分)

之間的函數(shù)關(guān)系式: (6分)

(2)

解得

所以,當(dāng)茶社購(gòu)買(mǎi)這種茶壺的數(shù)量小于10個(gè)時(shí),到乙茶具店購(gòu)買(mǎi)茶壺費(fèi)較少,當(dāng)茶社購(gòu)買(mǎi)數(shù)量為10個(gè)時(shí),費(fèi)用一樣,當(dāng)茶社購(gòu)買(mǎi)這種茶具的數(shù)量大于10個(gè)時(shí),到甲茶具店購(gòu)買(mǎi)茶壺的費(fèi)用較少。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面為矩形,側(cè)面底面,,.

1證明:;

2設(shè)與平面所成的角為,求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5分鐘,生產(chǎn)一個(gè)騎兵需7分鐘,生產(chǎn)一個(gè)傘兵需4分鐘,已知總生產(chǎn)時(shí)間不超過(guò)10小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn)5元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)6元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)3元.

(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)與騎兵個(gè)數(shù)表示每天的利潤(rùn)(元);

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為大于零的常數(shù)

1當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2求函數(shù)在區(qū)間上的最小值;

3求證:對(duì)于任意的時(shí),都有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1,圖中粗線畫(huà)出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個(gè)表面積最大的長(zhǎng)方體;第二次切削沿長(zhǎng)方體的對(duì)角面刨開(kāi),得到兩個(gè)三棱柱;第三次切削將兩個(gè)三棱柱分別沿棱和表面的對(duì)角線刨開(kāi)得到兩個(gè)鱉臑和兩個(gè)陽(yáng)馬,則陽(yáng)馬與鱉臑的體積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1設(shè)是函數(shù)的極值點(diǎn),求并討論的單調(diào)性;

2設(shè)是函數(shù)的極值點(diǎn),且恒成立,求的取值范圍其中常數(shù)滿足).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓.

(1)求證對(duì)任意實(shí)數(shù),該圓恒過(guò)一定點(diǎn);

(2)若該圓與圓切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線 的參數(shù)方程為為參數(shù)).

(1)直線過(guò)且與曲線相切,求直線的極坐標(biāo)方程;

(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有20名學(xué)生參加某次考試,成績(jī)(單位:分)的頻率分布直方圖如圖所示:

(Ⅰ)求頻率分布直方圖中的值;

(Ⅱ)分別求出成績(jī)落在中的學(xué)生人數(shù);

(Ⅲ)從成績(jī)?cè)?/span>的學(xué)生中任選2人,求所選學(xué)生的成績(jī)都落在中的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案