【題目】已知函數(shù), ,且曲線在處的切線方程為.
(1)求, 的值;
(2)求函數(shù)在上的最小值;
(3)證明:當(dāng)時(shí), .
【答案】(1) (2) (3)見解析
【解析】試題分析:(1)求出f(x)的導(dǎo)數(shù),計(jì)算, ,求出a,b的值即可;
(2)求出f(x)的導(dǎo)數(shù),得到導(dǎo)函數(shù)的單調(diào)性,得到f(x)在[0,1]遞增,從而求出f(x)的最大值;
(3)只需證明x>0時(shí), ,因?yàn)?/span>,且曲線在處的切線方程為,故可猜測:當(dāng)且時(shí), 的圖象恒在切線的上方.
試題解析:
(1)由題設(shè)得,∴,
解得, .
(2)由(1)知, ,
令函數(shù),∴,
當(dāng)時(shí), , 遞減;
當(dāng)時(shí), , 遞增;∴,即
∴當(dāng)時(shí), ,且僅當(dāng)時(shí),
故在上單調(diào)遞增,
∴;
(3)由題要證:當(dāng)時(shí), ,
即證: ,
因?yàn)?/span>,且曲線在處的切線方程為,
故可猜測:當(dāng)且時(shí), 的圖象恒在切線的上方.
下面證明:當(dāng)時(shí), ,
證明:設(shè), ,
則,令, ,
當(dāng)時(shí), , 單調(diào)遞減;
當(dāng)時(shí), , 單調(diào)遞增,
又, , ,
所以,存在,使得,
當(dāng)時(shí), ;當(dāng),
故在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.
又,∴,當(dāng)且僅當(dāng)時(shí)取等號.
故.
由(2)知, ,故,∴,當(dāng)且僅當(dāng)時(shí)取等號.
所以, .
即.所以, ,
即成立,當(dāng)時(shí)等號成立.
故:當(dāng)時(shí), , 12分
方法二:要證,等價(jià)于,又,可轉(zhuǎn)化為證明
令,
,
,因此當(dāng)時(shí), , 單調(diào)遞增;當(dāng)時(shí), , 單調(diào)遞減;
有最大值,即恒成立,即當(dāng)時(shí),
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足, ,其中, , 為非零常數(shù).
(1)若, ,求證: 為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是公差不等于零的等差數(shù)列.
①求實(shí)數(shù), 的值;
②數(shù)列的前項(xiàng)和構(gòu)成數(shù)列,從中取不同的四項(xiàng)按從小到大排列組成四項(xiàng)子數(shù)列.試問:是否存在首項(xiàng)為的四項(xiàng)子數(shù)列,使得該子數(shù)列中的所有項(xiàng)之和恰好為2017?若存在,求出所有滿足條件的四項(xiàng)子數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí), 恒成立,求的范圍;
(2)若在處的切線為,求的值.并證明當(dāng))時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的首項(xiàng)為,前項(xiàng)和為,若對任意的,均有(是常數(shù)且)成立,則稱數(shù)列為“數(shù)列”.
(1)若數(shù)列為“數(shù)列”,求數(shù)列的通項(xiàng)公式;
(2)是否存在數(shù)列既是“數(shù)列”,也是“數(shù)列”?若存在,求出符合條件的數(shù)列的通項(xiàng)公式及對應(yīng)的的值;若不存在,請說明理由;
(3)若數(shù)列為“數(shù)列”, ,設(shè),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點(diǎn)為,圓: ,過作垂直于軸的直線交拋物線于、兩點(diǎn),且的面積為.
(1)求拋物線的方程和圓的方程;
(2)若直線、均過坐標(biāo)原點(diǎn),且互相垂直, 交拋物線于,交圓于, 交拋物線于,交圓于,求與的面積比的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018天一大聯(lián)考高中畢業(yè)班階段性測試(四)】已知函數(shù), .
(I)若恒成立,求實(shí)數(shù)的取值范圍;
(II)證明:對于任意正整數(shù),都有成立.
附: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著共享單車的成功運(yùn)營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取1000人對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的1000人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:
男 | 女 | 總計(jì) | |
認(rèn)為共享產(chǎn)品對生活有益 | 400 | 300 | 700 |
認(rèn)為共享產(chǎn)品對生活無益 | 100 | 200 | 300 |
總計(jì) | 500 | 500 | 1000 |
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為共享產(chǎn)品的態(tài)度與性別有關(guān)系?
(2)為了答謝參與問卷調(diào)查的人員,該公司對參與本次問卷調(diào)查的人員隨機(jī)發(fā)放1張超市的購物券,購物券金額以及發(fā)放的概率如下:
購物券金額 | 20元 | 50元 |
概率 |
現(xiàn)有甲、乙兩人領(lǐng)取了購物券,記兩人領(lǐng)取的購物券的總金額為,求的分布列和數(shù)學(xué)期望.
參考公式: .
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心為,半徑為1的圓.
(1)求曲線, 的直角坐標(biāo)方程;
(2)設(shè)為曲線上的點(diǎn), 為曲線上的點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com