【題目】2018天一大聯(lián)考高中畢業(yè)班階段性測試(四)已知函數(shù),

I)若恒成立,求實數(shù)的取值范圍;

II)證明:對于任意正整數(shù),都有成立.

附:

【答案】I;(II)見解析.

【解析】試題分析函數(shù)恒成立問題轉化為最值問題分析即可恒成立,設 .只需分析單調性求出F(x)的最大值即可解得b的取值范圍(2))根據(jù)(1)可知時有不等式上恒成立,又因為,所以,即成立.

所以不等式上恒成立.所以對于任意正整數(shù), 恒成立. 所以 ,…, ,累加即可得所以 ,所以

解析:(1)設 .

.

, ,

所以當時, ,

于是上單調遞增;

時,

于是上單調遞減.

所以,

所以.

(2)根據(jù)(1)可知時有不等式上恒成立,

又因為,所以,即成立.

所以不等式上恒成立.

所以對于任意正整數(shù) 恒成立.

所以, ,…,

所以 ,

所以

,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點的橫坐標都縮短為原來的倍,縱坐標坐標都伸長為原來的倍,得到曲線,在極坐標系(與直角坐標系取相同的單位長度,且以原點為極點,以軸非負半軸為極軸)中,直線的極坐標方程為

(1)求直線和曲線的直角坐標方程;

(2)設點是曲線上的一個動點,求它到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關數(shù)據(jù)如下表:

一次購物款(單位:元)

顧客人數(shù)

統(tǒng)計結果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀念品.

(Ⅰ)試確定 的值,并估計每日應準備紀念品的數(shù)量;

(Ⅱ)現(xiàn)有人前去該商場購物,求獲得紀念品的數(shù)量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家電公司根據(jù)銷售區(qū)域將銷售員分成兩組.2017年年初,公司根據(jù)銷售員的銷售業(yè)績分發(fā)年終獎,銷售員的銷售額(單位:十萬元)在區(qū)間內對應的年終獎分別為2萬元,2.5萬元,3萬元,3.5萬元.已知200名銷售員的年銷售額都在區(qū)間內,將這些數(shù)據(jù)分成4組: ,得到如下兩個頻率分布直方圖:

以上面數(shù)據(jù)的頻率作為概率,分別從組與組的銷售員中隨機選取1位,記分別表示 組與組被選取的銷售員獲得的年終獎.

(1)求的分布列及數(shù)學期;

(2)試問組與組哪個組銷售員獲得的年終獎的平均值更高?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,且曲線處的切線方程為.

(1)求, 的值;

(2)求函數(shù)上的最小值;

(3)證明:當時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的內角, 的對邊分別為, , ,已知.

(1)求

(2)若,且 , 成等差數(shù)列,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年是內蒙古自治區(qū)成立70周年.某市旅游文化局為了慶祝內蒙古自治區(qū)成立70周年,舉辦了第十三屆成吉思汗旅游文化周.為了了解該市關注“旅游文化周”居民的年齡段分布,隨機抽取了名年齡在且關注“旅游文化周”的居民進行調查,所得結果統(tǒng)計為如圖所示的頻率分布直方圖.

年齡

單人促銷價格(單位:元)

(Ⅰ)根據(jù)頻率分布直方圖,估計該市被抽取市民的年齡的平均數(shù);

(Ⅱ)某旅行社針對“旅游文化周”開展不同年齡段的旅游促銷活動,各年齡段的促銷價位如表所示.已知該旅行社的運營成本為每人元,以頻率分布直方圖中各年齡段的頻率分布作為參團旅客的年齡頻率分布,試通過計算確定該旅行社的這一活動是否盈利;

(Ⅲ)若按照分層抽樣的方法從年齡在, 的居民中抽取人進行旅游知識推廣,并在知識推廣后再抽取人進行反饋,求進行反饋的居民中至少有人的年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018河南豫南九校高三下學期第一次聯(lián)考設函數(shù)

I)當時, 恒成立,求的范圍;

II)若處的切線為,且方程恰有兩解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018廣東省深中、華附、省實、廣雅四校聯(lián)考已知橢圓的離心率為,圓軸交于點, 為橢圓上的動點, , 面積最大值為

I求圓與橢圓的方程;

II的切線交橢圓于點,求的取值范圍.

查看答案和解析>>

同步練習冊答案