【題目】世界軍人運(yùn)動(dòng)會(huì),簡(jiǎn)稱(chēng)軍運(yùn)會(huì),是國(guó)際軍事體育理事會(huì)主辦的全球軍人最高規(guī)格的大型綜合性運(yùn)動(dòng)會(huì),每四年舉辦一屆,會(huì)期710天,比賽設(shè)27個(gè)大項(xiàng),參賽規(guī)模約100多個(gè)國(guó)家8000余人,規(guī)模僅次于奧運(yùn)會(huì),是和平時(shí)期各國(guó)軍隊(duì)展示實(shí)力形象、增進(jìn)友好交流、擴(kuò)大國(guó)際影響的重要平臺(tái),被譽(yù)為軍人奧運(yùn)會(huì)”.根據(jù)各方達(dá)成的共識(shí),軍運(yùn)會(huì)于20191018日至27日在武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個(gè)大項(xiàng)、329個(gè)小項(xiàng).其中,空軍五項(xiàng)、軍事五項(xiàng)、海軍五項(xiàng)、定向越野和跳傘5個(gè)項(xiàng)目為軍事特色項(xiàng)目,其他項(xiàng)目為奧運(yùn)項(xiàng)目.現(xiàn)對(duì)某國(guó)在射擊比賽預(yù)賽中的得分?jǐn)?shù)據(jù)進(jìn)行分析,得到如下的頻率分布直方圖:

1)估計(jì)某國(guó)射擊比賽預(yù)賽成績(jī)得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)根據(jù)大量的射擊成績(jī)測(cè)試數(shù)據(jù),可以認(rèn)為射擊成績(jī)近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問(wèn)中樣本標(biāo)準(zhǔn)差的近似值為50,用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,求射擊成績(jī)得分恰在350400的概率;[參考數(shù)據(jù):若隨機(jī)變量服從正態(tài)分布,則:,,

3)某汽車(chē)銷(xiāo)售公司在軍運(yùn)會(huì)期間推廣一款新能源汽車(chē),現(xiàn)面向意向客戶(hù)推出玩游戲,送大獎(jiǎng),活動(dòng),客戶(hù)可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車(chē)在方格圖上行進(jìn),若遙控車(chē)最終停在勝利大本營(yíng),則可獲得購(gòu)車(chē)優(yōu)惠券.已知骰子出現(xiàn)任意點(diǎn)數(shù)的概率都是,方格圖上標(biāo)有第0格,第1格,第2格,……50格.遙控車(chē)開(kāi)始在第0格,客戶(hù)每拋擲一次骰子,遙控車(chē)向前移動(dòng)一次,若拋擲出正面向上的點(diǎn)數(shù)是12,3,45點(diǎn),遙控車(chē)向前移動(dòng)一格(從),若拋擲出正面向上的點(diǎn)數(shù)是6點(diǎn),遙控車(chē)向前移動(dòng)兩格(從),直到遙控車(chē)移動(dòng)到第49格(勝利大本營(yíng))或第50格(失敗大本營(yíng))時(shí),游戲結(jié)束.設(shè)遙控車(chē)移動(dòng)到第格的概率為,試證明是等比數(shù)列,并求,以及根據(jù)的值解釋這種游戲方案對(duì)意向客戶(hù)是否具有吸引力.

【答案】(1)300;(2)0.1359;(3),這種游戲方案客戶(hù)參與中獎(jiǎng)的可能性較大,對(duì)意向客戶(hù)有吸引力

【解析】

1)每一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表乘以概率,相加即得估計(jì)均值;

(2)由正態(tài)分布的性質(zhì)結(jié)合所給數(shù)據(jù)計(jì)算.

(3)依次求出,,可得的遞推關(guān)系:,變形為,得到一個(gè)等比數(shù)列,求得,然后用累加法求得,即得,與比較可知吸引力大不大.

1;

2)因?yàn)?/span>XN300,502),所以;

3)搖控車(chē)開(kāi)始在第0格為必然事件,P01,第一次擲骰子,正面向上不出現(xiàn)6點(diǎn),搖控車(chē)移動(dòng)到第1格,其概率為,即;搖控車(chē)移到第n格(2≤n≤49)格的情況是下列兩種,而且也只有兩種;

①搖控車(chē)先到第n-2格,拋擲出正面向上的點(diǎn)數(shù)為6點(diǎn),其概率為

②搖控車(chē)先到第n-1格,拋擲骰子正面向上不出現(xiàn)6點(diǎn),其概率為,

,,故1≤n≤49時(shí),Pn-Pn-1是首項(xiàng)為,公比為的等比數(shù)列,

PnP0+(P1-P0)+(P2-P1)++(Pn-Pn-1

,,

故這種游戲方案客戶(hù)參與中獎(jiǎng)的可能性較大,對(duì)意向客戶(hù)有吸引力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形,平面,,分別為,的中點(diǎn).

1)證明:平面;

2)若與平面所成的角為,,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,且,平面平面,,點(diǎn)為線(xiàn)段的中點(diǎn),點(diǎn)是線(xiàn)段上的一個(gè)動(dòng)點(diǎn).

(Ⅰ)求證:平面平面

(Ⅱ)當(dāng)點(diǎn)是線(xiàn)段上的中點(diǎn)時(shí),求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)擁有3條相同的生產(chǎn)線(xiàn),每條生產(chǎn)線(xiàn)每月至多出現(xiàn)一次故障.各條生產(chǎn)線(xiàn)是否出現(xiàn)故障相互獨(dú)立,且出現(xiàn)故障的概率為.

1)求該企業(yè)每月有且只有1條生產(chǎn)線(xiàn)出現(xiàn)故障的概率;

2)為提高生產(chǎn)效益,該企業(yè)決定招聘名維修工人及時(shí)對(duì)出現(xiàn)故障的生產(chǎn)線(xiàn)進(jìn)行維修.已知每名維修工人每月只有及時(shí)維修1條生產(chǎn)線(xiàn)的能力,且每月固定工資為1萬(wàn)元.此外,統(tǒng)計(jì)表明,每月在不出故障的情況下,每條生產(chǎn)線(xiàn)創(chuàng)造12萬(wàn)元的利潤(rùn);如果出現(xiàn)故障能及時(shí)維修,每條生產(chǎn)線(xiàn)創(chuàng)造8萬(wàn)元的利潤(rùn);如果出現(xiàn)故障不能及時(shí)維修,該生產(chǎn)線(xiàn)將不創(chuàng)造利潤(rùn),以該企業(yè)每月實(shí)際獲利的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個(gè)?(實(shí)際獲利=生產(chǎn)線(xiàn)創(chuàng)造利潤(rùn)-維修工人工資)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)設(shè),當(dāng)函數(shù)的圖象有三個(gè)不同的交點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),為其焦點(diǎn),為其準(zhǔn)線(xiàn),過(guò)任作一條直線(xiàn)交拋物線(xiàn)于兩點(diǎn),、分別為、上的射影,的中點(diǎn),給出下列命題:

1;(2;(3

4的交點(diǎn)的軸上;(5交于原點(diǎn).

其中真命題的序號(hào)為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)是否存在,使得在區(qū)間的最小值為且最大值為1?若存在,求出的所有值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省在2017年啟動(dòng)了“3+3”高考模式.所謂“3+3”高考模式,就是語(yǔ)文、數(shù)學(xué)、外語(yǔ)(簡(jiǎn)稱(chēng)語(yǔ)、數(shù)、外)為高考必考科目,從物理、化學(xué)、生物、政治、歷史、地理(簡(jiǎn)稱(chēng)理、化、生、政、史、地)六門(mén)學(xué)科中任選三門(mén)作為選考科目.該省某中學(xué)2017級(jí)高一新生共有990人,學(xué)籍號(hào)的末四位數(shù)從00010990.

1)現(xiàn)從高一學(xué)生中抽樣調(diào)查110名學(xué)生的選考情況,問(wèn):采用什么樣的抽樣方法較為恰當(dāng)?(只寫(xiě)出結(jié)論,不需要說(shuō)明理由)

2)據(jù)某教育機(jī)構(gòu)統(tǒng)計(jì),學(xué)生所選三門(mén)學(xué)科在將來(lái)報(bào)考專(zhuān)業(yè)時(shí)受限制的百分比是不同的.該機(jī)構(gòu)統(tǒng)計(jì)了受限百分比較小的十二種選擇的百分比值,制作出如下條形圖.

設(shè)以上條形圖中受限百分比的均值為,標(biāo)準(zhǔn)差為.如果一個(gè)學(xué)生所選三門(mén)學(xué)科專(zhuān)業(yè)受限百分比在區(qū)間內(nèi),我們稱(chēng)該選擇為恰當(dāng)選擇”.該校李明同學(xué)選擇了化學(xué),然后從余下五門(mén)選考科目中任選兩門(mén).問(wèn)李明的選擇為恰當(dāng)選擇"的概率是多少?(均值,標(biāo)準(zhǔn)差均精確到0.1

(參考公式和數(shù)據(jù):,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年是新中國(guó)成立七十周年,新中國(guó)成立以來(lái),我國(guó)文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來(lái),文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國(guó)公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)(個(gè))與對(duì)應(yīng)年份編號(hào)的散點(diǎn)圖(為便于計(jì)算,將 2013 年編號(hào)為 1,2014 年編號(hào)為 2,…,2018年編號(hào)為 6,把每年的公共圖書(shū)館業(yè)機(jī)構(gòu)個(gè)數(shù)作為因變量,把年份編號(hào)從 1 到 6 作為自變量進(jìn)行回歸分析),得到回歸直線(xiàn),其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個(gè)數(shù)是( )

①公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)與年份的正相關(guān)性較強(qiáng)

②公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)平均每年增加13.743個(gè)

③可預(yù)測(cè) 2019 年公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)約為3192個(gè)

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案