【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機構(gòu)數(shù)(個)與對應(yīng)年份編號的散點圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機構(gòu)個數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個數(shù)是( )

①公共圖書館業(yè)機構(gòu)數(shù)與年份的正相關(guān)性較強

②公共圖書館業(yè)機構(gòu)數(shù)平均每年增加13.743個

③可預(yù)測 2019 年公共圖書館業(yè)機構(gòu)數(shù)約為3192個

A.0B.1C.2D.3

【答案】D

【解析】

根據(jù)確定是正相關(guān)還是負相關(guān)以及相關(guān)性的強弱;根據(jù)的值判斷平均每年增加量;根據(jù)回歸直線方程預(yù)測年公共圖書館業(yè)機構(gòu)數(shù).

由圖知點散布在從左下角到右上角的區(qū)域內(nèi),所以為正相關(guān),

趨近于1,所以相關(guān)性較強,故①正確;由回歸方程知②正確;

由回歸方程,當時,得估計值為3191.9≈3192,故③正確.

故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學對高三年級進行身高統(tǒng)計,測量隨機抽取的20名學生的身高,其頻率分布直方圖如下(單位:cm

1)根據(jù)頻率分布直方圖,求出這20名學生身高中位數(shù)的估計值和平均數(shù)的估計值.

2)在身高為140—160的學生中任選2,求至少有一人的身高在150—160之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省即將實行新高考,不再實行文理分科.某校研究數(shù)學成績優(yōu)秀是否對選擇物理有影響,對該校2018級的500名學生進行調(diào)在收集到相關(guān)數(shù)據(jù)如下:

選物理

不選物理

總計

數(shù)學成績優(yōu)秀

數(shù)學成績不優(yōu)秀

130

總計

300

500

1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;

2)能否在犯錯誤的概率不超過0.05的前提下認為數(shù)學成績優(yōu)秀與選物理有關(guān)?

附:.

臨界值表:

P

0.10

0.05

0.010

0.005

0.001

k

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費用y萬元有如下的統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

1)畫出散點圖并判斷是否線性相關(guān);

2)如果線性相關(guān),求線性回歸方程;

3)估計使用年限為10年時,維修費用是多少?

附注:①參考公式:回歸方程中斜率和截距的最小二乘估計分別為

②參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)當時,求函數(shù)的極值;

(2)若在區(qū)間上存在不相等的實數(shù),使得成立,求的取值范圍;

(3)設(shè)的圖象為,的圖象為,若直線分別交于,問是否存在整數(shù),使處的切線與處的切線互相平行,若存在,求出的所有值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面程序框圖中,已知,則輸出的結(jié)果是____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某網(wǎng)購平臺為了解某市居民在該平臺的消費情況,從該市使用其平臺且每周平均消費額超過100元的人員中隨機抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數(shù)可構(gòu)成等差數(shù)列.

(1)求的值;

2)分析人員對100名調(diào)查對象的性別進行統(tǒng)計發(fā)現(xiàn),消費金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認為消費金額與性別有關(guān)?

(3)分析人員對抽取對象每周的消費金額與年齡進一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點值代替)

列聯(lián)表

男性

女性

合計

消費金額

消費金額

合計

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,下列判斷正確的是(

A.A1C⊥面AB1D1B.A1C⊥面AB1C1D

C.A1B⊥面AB1D1D.A1BAD1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上存在最大值0,求函數(shù)在[0,+∞)上的最大值.

查看答案和解析>>

同步練習冊答案