【題目】已知正項數(shù)列的前項和為,且,,數(shù)列滿足,且
(I)求數(shù)列,的通項公式;
(II)令,求數(shù)列的前項和。
【答案】(I),;(II)
【解析】
(I)利用求得;根據求得,從而可知是等差數(shù)列,從而利用等差數(shù)列通項公式求得結果;利用可證得,可知數(shù)列的奇數(shù)項成等比、偶數(shù)項成等比,分別求解出為奇數(shù)和為偶數(shù)兩種情況下的通項公式即可;(II)由(I)可得,采用分組求和的方式;對采用錯位相減法求和;對分為為奇數(shù)和為偶數(shù)兩種情況來討論;從而可對兩個部分加和得到結果.
(I)當時,,即
由可得
即:
又 是公差為,首項為的等差數(shù)列
由題意得:
由兩式相除得:
是奇數(shù)時,是公比是,首項的等比數(shù)列
同理是偶數(shù)時是公比是,首項的等比數(shù)列
綜上:
(II),即
令的前項和為,則
兩式相減得:
令的前項和為
綜上:
科目:高中數(shù)學 來源: 題型:
【題目】如圖四棱錐中,底面,是邊長為2的等邊三角形,且,,點是棱上的動點.
(I)求證:平面平面;
(Ⅱ)當線段最小時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線與曲線滿足下列兩個條件:①直線在點處與曲線相切;②曲線在點附近位于直線的兩側,則稱直線在點處“切過”曲線.則下列結論正確的是( )
A.直線在點處“切過”曲線
B.直線在點處“切過”曲線
C.直線在點處“切過”曲線
D.直線在點處“切過”曲線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校命制了一套調查問卷(試卷滿分均為100分),并對整個學校的學生進行了測試,先從這些學生的成績中隨機抽取了50名學生的成績,按照分成5組,制成了如圖所示的頻率分布直方圖(假定每名學生的成績均不低于50分)
(1)求頻率分布直方圖中的的值,并估計50名學生的成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據用該組區(qū)間的中點值代表)
(2)用樣本估計總體,若該校共有2000名學生,試估計該校這次成績不低于70分的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 ,其焦點到準線的距離為2,直線與拋物線交于,兩點,過,分別作拋物線的切線,,與交于點.
(Ⅰ)求的值;
(Ⅱ)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三邊BC,CA,AB的中點分別是D(5,3),E(4,2),F(1,1).
(1)求△ABC的邊AB所在直線的方程及點A的坐標;
(2)求△ABC的外接圓的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com