【題目】若直線與曲線滿足下列兩個條件:①直線在點處與曲線相切;②曲線在點附近位于直線的兩側(cè),則稱直線在點處“切過”曲線.則下列結(jié)論正確的是( )
A.直線在點處“切過”曲線
B.直線在點處“切過”曲線
C.直線在點處“切過”曲線
D.直線在點處“切過”曲線
【答案】ACD
【解析】
根據(jù)“切過”的定義以及導(dǎo)數(shù)的幾何意義逐個選項判定即可.
A項,因為,當時,,
所以是曲線在點處的切線.
當時,;當時,,
所以曲線在點附近位于直線的兩側(cè),結(jié)論正確;
B項,,當時,,在處的切線為.
令,則,
當時,;當時,,
所以.故,
即當時,曲線全部位于直線的下側(cè)(除切點外),結(jié)論錯誤;
C項,,當時,,在處的切線為,
由正弦函數(shù)圖像可知,曲線在點附近位于直線的兩側(cè),結(jié)論正確;
D項,,當時,,在處的切線為,
由正切函數(shù)圖像可知,曲線在點附近位于直線的兩側(cè),結(jié)論正確.
故選:ACD.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買次維修,每次維修費用300元,另外實際維修一次還需向維修人員支付上門服務(wù)費80元.在機器使用期間,如果維修次數(shù)超過購買的次時,則超出的維修次數(shù),每次只需支付維修費用700元,無需支付上門服務(wù)費.需決策在購買機器時應(yīng)同時一次性購買幾次維修,為此搜集并整理了100臺這種機器在三年使用期內(nèi)的維修次數(shù),得到下面統(tǒng)計表:
維修次數(shù) | 6 | 7 | 8 | 9 | 10 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記表示1臺機器在三年使用期內(nèi)的維修次數(shù),表示1臺機器維修所需的總費用(單位:元).
(1)若,求與的函數(shù)解析式;
(2)假設(shè)這100臺機器在購機的同時每臺都購買8次維修,或每臺都購買9次維修,分別計算這100臺機器在維修上所需總費用的平均數(shù),并以此作為決策依據(jù),購買1臺機器的同時應(yīng)購買8次還是9次維修?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某濕地兩點間的距離,觀察者找到在同一直線上的三點.從點測得,從點測得,,從點測得.若測得,(單位:百米),則兩點的距離為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽。從參加競賽的學(xué)生中,隨機抽取40名學(xué)生,將其成績分為六段,,,,,,到如圖所示的頻率分布直方圖.
(1)求圖中的值及樣本的中位數(shù)與眾數(shù);
(2)若從競賽成績在與兩個分數(shù)段的學(xué)生中隨機選取兩名學(xué)生,設(shè)這兩名學(xué)生的競賽成績之差的絕對值不大于分為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一場拋擲骰子的游戲中,游戲者最多有三次機會拋擲一顆骰子,游戲規(guī)則如下:拋擲1枚骰子,第1次拋擲骰子向上的點數(shù)為奇數(shù)則記為成功,第2次拋擲骰子向上的點數(shù)為3的倍數(shù)則記為成功,第3次拋擲骰子向上的點數(shù)為6則記為成功.游戲者在前兩次拋擲中至少成功一次才可以進行第三次拋擲,其中拋擲骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4分.
(1)求游戲者有機會第3次拋擲骰子的概率;
(2)設(shè)游戲者在一場拋擲骰子游戲中所得的分數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合.
(1)求證:函數(shù);
(2)某同學(xué)由(1)又發(fā)現(xiàn)是周期函數(shù)且是偶函數(shù),于是他得出兩個命題:①集合中的元素都是周期函數(shù);②集合中的元素都是偶函數(shù),請對這兩個命題給出判斷,如果正確,請證明;如果不正確,請舉出反例;
(3)設(shè)為非零常數(shù),求的充要條件,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的前項和為,且,,數(shù)列滿足,且
(I)求數(shù)列,的通項公式;
(II)令,求數(shù)列的前項和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過直線2x+y+4=0和圓x2+y2+2x﹣4y+1=0的交點,且面積最小的圓方程為( )
A.(x+)2+(y+)2=B.(x﹣)2+(y﹣)2=
C.(x﹣)2+(y+)2=D.(x+)2+(y﹣)2=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com