【題目】在四棱柱中,,平面,.

(1)證明:.

(2)求與平面所成角的正弦值.

【答案】(1)見(jiàn)解析; (2).

【解析】

1)根據(jù)三角形全等證明ACBD,結(jié)合可得AC⊥平面,故而;(2,的交點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,計(jì)算平面的法向量,利用線(xiàn)面角的向量公式求解即可

(1)證明:ADCD,∴∠DAC=∠DCA,

又∠BAD=∠BCD,∴∠BAC=∠BCA,∴ABAC

∴△ABD≌△CBD,∴∠ADB=∠CDB,

∴△AOD≌△COD,∴∠AOD=∠COD90°,

ACBD,

又因?yàn)?/span>平面,所以,又所以平面,

因?yàn)?/span>平面,所以.

(2)以,的交點(diǎn)為原點(diǎn),過(guò)O作平行于的直線(xiàn)為z軸,建立如圖所示的空間直角坐標(biāo)系,由(1)及,知,,,,

所以,.

設(shè)平面的法向量為,由,得,

所以,令,得.

設(shè)與平面所成的角為,則 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集I=1,2,3,4,5,6},集合A,B都是I的子集,若AB=13,5},則稱(chēng)A,B理想配集,記作(A,B),問(wèn)這樣的理想配集A,B)共有( )

A. 7個(gè) B. 8個(gè) C. 27個(gè) D. 28個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,邊,所在直線(xiàn)的方程分別為,,.

1)求邊上的高所在的直線(xiàn)方程;

2)若圓過(guò)直線(xiàn)上一點(diǎn)及點(diǎn),當(dāng)圓面積最小時(shí),求其標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省確定從2021年開(kāi)始,高考采用“”的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、外語(yǔ),為必考科目;“1”表示從物理、歷史中任選一門(mén);“2”則是從生物、化學(xué)、地理、政治中選擇兩門(mén),共計(jì)六門(mén)考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

(2)學(xué)校計(jì)劃在高二上學(xué)期開(kāi)設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的n名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?

說(shuō)明你的理由;

(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若,求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列三個(gè)命題:(1)如果一個(gè)平面內(nèi)有無(wú)數(shù)條直線(xiàn)平行于另一個(gè)平面,則這兩個(gè)平面平行;(2)一個(gè)平面內(nèi)的任意一條直線(xiàn)都與另一個(gè)平面不相交,則這兩個(gè)平面平行;(3)一個(gè)平面內(nèi)有不共線(xiàn)的三點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行;其中正確命題的個(gè)數(shù)是( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開(kāi)發(fā)了一款面向中學(xué)生的應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng)。這款軟件的激活碼為下面數(shù)學(xué)題的答案:記集合.例如:,若將集合的各個(gè)元素之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為____________;

定義現(xiàn)指定,將集合的元素從小到大排列組成數(shù)列,若將的各項(xiàng)之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)圖書(shū)館舉行高中志愿者檢索圖書(shū)的比賽,從高一、高二兩個(gè)年級(jí)各抽取10名志愿者參賽。在規(guī)定時(shí)間內(nèi),他們檢索到的圖書(shū)冊(cè)數(shù)的莖葉圖如圖所示,規(guī)定冊(cè)數(shù)不小于20的為優(yōu)秀.

() 從兩個(gè)年級(jí)的參賽志愿者中各抽取兩人,求抽取的4人中至少一人優(yōu)秀的概率;

() 從高一10名志愿者中抽取一人,高二10名志愿者中抽取兩人,3人中優(yōu)秀人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計(jì)

70

30

100

根據(jù)表中數(shù)據(jù),問(wèn)是否有的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

同步練習(xí)冊(cè)答案