如圖,在平面直角坐標系xOy中,橢圓的離心率為,過橢圓右焦點作兩條互相垂直的弦與.當直線斜率為0時,.
(1)求橢圓的方程;
(2)求的取值范圍.
(1),(2).
解析試題分析:(1)求橢圓標準方程,只需兩個獨立條件. 一個是,另一個是點在橢圓上即,所以.所以橢圓的方程為.(2)研究直線與橢圓位置關系,關鍵確定參數(shù),一般取直線的斜率,① 當兩條弦中一條斜率為0時,另一條弦的斜率不存在,由題意知,② 當兩弦斜率均存在且不為0時,設直線的方程為,將直線的方程代入橢圓方程中,并整理得,所以.同理,.所以,利用不等式或函數(shù)單調性可得的取值范圍是綜合①與②可知,的取值范圍是.
【解】(1)由題意知,,,
所以. 2分
因為點在橢圓上,即,
所以.
所以橢圓的方程為. 6分
(2)① 當兩條弦中一條斜率為0時,另一條弦的斜率不存在,
由題意知; 7分
② 當兩弦斜率均存在且不為0時,設,,
且設直線的方程為,
則直線的方程為.
將直線的方程代入橢圓方程中,并整理得,
所以,,
所以. 10分
同理,.
所以, 12分
令,則,,,
設,
因為,所以,
所以,
所以.
綜合①與②可知,的取值范圍是. 16分
考點:橢圓的方程及橢圓與直線的位置關系.
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線="1" 的兩個焦點為、,P是雙曲線上的一點,
且滿足 ,
(1)求的值;
(2)拋物線的焦點F與該雙曲線的右頂點重合,斜率為1的直線經(jīng)過點F與該拋物線交于A、B兩點,求弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,短軸端點分別為.
(1)求橢圓的標準方程;
(2)若,是橢圓上關于軸對稱的兩個不同點,直線與軸交于點,判斷以線段為直徑的圓是否過點,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓,過點且離心率為.
(1)求橢圓的方程;
(2)已知是橢圓的左右頂點,動點M滿足,連接AM交橢圓于點P,在x軸上是否存在異于A、B的定點Q,使得直線BP和直線MQ垂直.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的兩個焦點分別為和,離心率.
(1)求橢圓的方程;
(2)若直線()與橢圓交于不同的兩點、,且線段
的垂直平分線過定點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的中心和拋物線的頂點均為原點,、的焦點均在軸上,過的焦點F作直線,與交于A、B兩點,在、上各取兩個點,將其坐標記錄于下表中:
(1)求,的標準方程;
(2)若與交于C、D兩點,為的左焦點,求的最小值;
(3)點是上的兩點,且,求證:為定值;反之,當為此定值時,是否成立?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的一個頂點和兩個焦點構成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點,試問,是否存在軸上的點,使得對任意的,為定值,若存在,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:+=1的離心率為,左焦點為F(-1,0),
(1)設A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線L與橢圓C交于M,N兩點,若,求直線L的方程;
(2)橢圓C上是否存在三點P,E,G,使得S△OPE=S△OPG=S△OEG=?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率,長軸的左右端點分別為,.
(1)求橢圓的方程;
(2)設動直線與曲線有且只有一個公共點,且與直線相交于點.
求證:以為直徑的圓過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com