打一口深21米的井,打到第一米深處時(shí)需要40分鐘,從第一米深處打到第二米深處需要50分鐘,以后每深一米都要比前一米多10分鐘,則打到最后一米深處要用
 
小時(shí).
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:先將實(shí)際問(wèn)題轉(zhuǎn)化為等差數(shù)列問(wèn)題,利用等差數(shù)列的通項(xiàng)公式求出打到最后一米深處要用的時(shí)間.
解答: 解:據(jù)題意:每打一米井所需的時(shí)間構(gòu)成一等差數(shù)列,記作{an},
a1=
2
3
,公差d=
1
6
,項(xiàng)數(shù)n=21,
a21=
2
3
+(21-1)×
1
6
=4

∴打到最后一米深處要用4小時(shí).
故答案為:4.
點(diǎn)評(píng):本題考查利用等差數(shù)列的問(wèn)題解決實(shí)際問(wèn)題,關(guān)鍵是將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)列問(wèn)題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購(gòu)令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購(gòu)令”贊成人數(shù)如表.
月收入(單位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 12 5 2 1
(1)由以上統(tǒng)計(jì)數(shù)據(jù)求下面2乘2列聯(lián)表中的b,c的值,并問(wèn)是否有99%的把握認(rèn)為“月收入以55百元為分界點(diǎn)對(duì)“樓市限購(gòu)令”的態(tài)度有差異;
月收入低于55百元的人數(shù) 月收入不低于55百元的人數(shù) 合計(jì)
贊成 a=29       b 32
不贊成        c       d=7
合計(jì)  50
(2)若對(duì)在[15,25),[25,35)的被調(diào)查中各隨機(jī)選取一人進(jìn)行追蹤調(diào)查,記選中的2人中不贊成“樓市限購(gòu)令”人數(shù)為ξ,求隨機(jī)變量ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面2米,水面寬4米,水位上升1米后,水面寬
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖偽代碼中,若輸入x的值為-4,則輸出y的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)(a+1,a-1)在圓x2+y2-2ay-4=0的內(nèi)部,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1-2x,等比數(shù)列{an}的前n項(xiàng)和為Sn,f(x)的圖象經(jīng)過(guò)點(diǎn)(n,Sn),則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=cos(2x-
π
3
)+cos(2x+
π
6
)有下列命題:
①y=f(x)的最大值為
2

②y=f(x)的一條對(duì)稱軸方程是x=
π
24
;
③y=f(x)在區(qū)間(
π
24
,
13π
24
)上單調(diào)遞減;
④將函數(shù)y=
2
cos2x的圖象向左平移
24
個(gè)單位后,與已知函數(shù)的圖象重合.
其中正確命題的序號(hào)是
 
.(注:把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列4個(gè)命題:
①函數(shù)f(x)=lg(
cosx-1
+
1-cosx
+1)既是奇函數(shù)又是偶函數(shù);
②函數(shù)f(x)=4sin(2x+
π
3
)(x∈R),圖象關(guān)于點(diǎn)(-
π
6
,0)對(duì)稱,也關(guān)于直線x=
π
6
對(duì)稱;
③若f(x)是R上周期為5的奇函數(shù),且滿足f(1)=1,f(2)=2,則f(3)-f(4)=-1;
④已知
sinα
sinβ
=p,
cosα
cosβ
=q,且p≠±1,q≠0,則tanαtanβ=
p(q2-1)
q(p2-1)
;
其中假命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a3a11=16,則log2a1=( 。
A、4B、-4C、2D、-2

查看答案和解析>>

同步練習(xí)冊(cè)答案