【題目】以為直徑的圓經(jīng)過、兩點(diǎn),延長、交于點(diǎn),將沿線段折起,使點(diǎn)在底面的射影恰好為的中點(diǎn).若,,線段、的中點(diǎn)分別為.
(1)判斷四點(diǎn)是否共面,并說明理由;
(2)求四棱錐的體積.
【答案】(1)四點(diǎn)不共面.(2)
【解析】試題分析:(1)證明四點(diǎn)不共面,基本方法為反證法,即假設(shè)四點(diǎn)共面,則由線線平行得到線面平行平面,再由線面平行得到線線平行,與條件相交矛盾,反設(shè)不成立,得到結(jié)論,(2)求四棱錐的體積,關(guān)鍵在于求高,而高的尋求往往借助于線面垂直關(guān)系得到,本題根據(jù)面面垂直性質(zhì)定理得到線面垂直,,所以為四棱錐的高,再代入體積公式即可.
試題解析:(1)假設(shè)四點(diǎn)共面,因?yàn)?/span>,平面,所以平面,
又因?yàn)槠矫?/span> 平面,平面, 所以,與已知矛盾,所以四點(diǎn)不共面.
(2)由題意,又,于,
所以平面
所以平面平面,點(diǎn)在底面的射影恰為的中點(diǎn),所以,所以為四棱錐的高,,
∴,,∴
∴,,,線段的中點(diǎn)為,
所以點(diǎn)到平面的高為
連接, 所以,,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為上的偶函數(shù),當(dāng)時(shí), .對(duì)于結(jié)論
(1)當(dāng)時(shí), ;(2)函數(shù)的零點(diǎn)個(gè)數(shù)可以為4,5,7;
(3)若,關(guān)于的方程有5個(gè)不同的實(shí)根,則;
(4)若函數(shù)在區(qū)間上恒為正,則實(shí)數(shù)的范圍是.
說法正確的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:
他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似的,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )
A. 36 B. 45 C. 99 D. 100
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2-2x-3,求f(3),f(-5),f(5),并計(jì)算f(3)+f(-5)+f(5)的值.設(shè)計(jì)出解決該問題的一個(gè)算法,并畫出程框圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,用符號(hào)表示不超過的最大整數(shù),若函數(shù)有且僅有3個(gè)零點(diǎn),則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】滬昆高速鐵路全線2016年12月28日開通運(yùn)營.途經(jīng)鷹潭北站的、兩列列車乘務(wù)組工作人員為了了解乘坐本次列車的乘客每月需求情況,分別在兩個(gè)車次各隨機(jī)抽取了100名旅客進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果,繪制了月乘車次數(shù)的頻率分布直方圖和頻數(shù)分布表.
(1)若將頻率視為概率,月乘車次數(shù)不低于15次的稱之為“老乘客”,試問:哪一車次的“老乘客”較多,簡(jiǎn)要說明理由;
(2)已知在次列車隨機(jī)抽到的50歲以上人員有35名,其中有10名是“老乘客”,由條件完成列聯(lián)表,并根據(jù)資料判斷,是否有的把握認(rèn)為年齡與乘車次數(shù)有關(guān),說明理由.
老乘客 | 新乘客 | 合計(jì) | |||||||
50歲以上 | |||||||||
50歲以下 | |||||||||
合計(jì) | |||||||||
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |||||
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | |||||
附:隨機(jī)變量(其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ (x≠0,a∈R).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.
(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
(Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?
甲班(A方式) | 乙班(B方式) | 總計(jì) | |
成績(jī)優(yōu)秀 | |||
成績(jī)不優(yōu)秀 | |||
總計(jì) |
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+3x2+9x+1.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)在點(diǎn)(﹣2,f(﹣2))處的切線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com