【題目】已知函數(shù)f(x)=﹣x3+3x2+9x+1.

(1)求f(x)的單調遞減區(qū)間;

(2)求f(x)在點(﹣2,f(﹣2))處的切線方程.

【答案】(1)遞減區(qū)間為(﹣∞,﹣1)和(3,+∞);(2)15x+y+27=0.

【解析】試題分析:求函數(shù)的單調區(qū)間只需對函數(shù)求導,解不等式 ,得出增區(qū)間,得出減區(qū)間,求函數(shù)在某點處的切線方程,利用導數(shù)的幾何意義,求函數(shù)在該點處的導數(shù)值即為切線的斜率,利用點斜式寫出切線方程.

試題解析:(1)函數(shù)f(x)=﹣x3+3x2+9x+1的導數(shù)為

f′(x)=﹣3x2+6x+9.

令f′(x)<0,解得x<﹣1,或x>3,

可得函數(shù)f(x)的單調遞減區(qū)間為(﹣∞,﹣1)和(3,+∞);

(2)f′(x)=﹣3x2+6x+9,

可得f(x)在點(﹣2,f(﹣2))處的切線斜率為

k=﹣3×4﹣12+9=﹣15,切點為(﹣2,3),

即有f(x)在點(﹣2,f(﹣2))處的切線方程為y﹣3=﹣15(x+2),

即為15x+y+27=0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為直徑的圓經(jīng)過兩點,延長、交于點,將沿線段折起,使點在底面的射影恰好為的中點.若,線段、的中點分別為.

(1)判斷四點是否共面,并說明理由;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國個人所得稅》規(guī)定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月納稅所得額,此項稅款按下表分段累計計算:

已知張先生的月工資、薪金所得為10000元,問他當月應繳納多少個人所得稅?

設王先生的月工資、薪金所得為元,當月應繳納個人所得稅為元,寫出的函數(shù)關系式;

(3)已知王先生一月份應繳納個人所得稅為303元,那么他當月的個工資、薪金所得為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD—A1B1C1D1中,若EA1C1中點,則直線CE垂直于( )

A. AC B. BD C. A1D D. A1A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校對高二年級選學生物的學生的某次測試成績進行了統(tǒng)計,隨機抽取了名學生的成績作為樣,根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方如下

(1)求表中的值和頻率分布直方圖中的值;

(2)如果用分層抽樣的方法,從樣本成績在的學生中共抽取人,再從人中選人,

求這人成績在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)全集U{2,4,-(a3)2},集合A{2,a2a2},若UA{1},求實數(shù)a的值. (2)已知A{x|2axa3}B{x|x<1x>5},若AB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究。他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子的發(fā)芽數(shù),得到如下資料:

日期

121

122

123

124

125

溫差/

10

11

13

12

8

發(fā)芽數(shù)/

23

25

30

26

16

該農科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關于x的線性回歸方程bxa;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為 得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

(附:,,其中,為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察以下5個等式:

-1=-1

-1+3=2

-1+3-5=-3

-1+3-5+7=4

-1+3-5+7-9=-5

……

根據(jù)以上式子規(guī)律

1寫出第6個等式,并猜想第n個等式;n∈N*

2用數(shù)學歸納法證明上述所猜想的第n個等式成立n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關于x的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

同步練習冊答案