(本題滿分12分) 設(shè)函數(shù).
(Ⅰ)判斷能否為函數(shù)的極值點(diǎn),并說明理由;
(Ⅱ)若存在,使得定義在上的函數(shù)處取得最大值,求實(shí)數(shù)的最大值.

(Ⅰ)當(dāng)時(shí),的極小值點(diǎn);(Ⅱ) 

解析試題分析:(Ⅰ),令,得;   2’
當(dāng)時(shí),,于是單調(diào)遞增,在單調(diào)遞減,
單調(diào)遞增.
故當(dāng)時(shí),的極小值點(diǎn)                  2’
(Ⅱ).
由題意,當(dāng)時(shí),恒成立              2’
易得,令,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/e3/c/1a1tk2.png" style="vertical-align:middle;" />必然在端點(diǎn)處取得最大值,即               4’
,即,解得, ,
所以的最大值為 2’
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見注意點(diǎn),綜合考查運(yùn)用知識(shí)分析和解決問題的能力,中等題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)當(dāng)時(shí),討論函數(shù)的單調(diào)性:
(Ⅱ)若函數(shù)的圖像上存在不同兩點(diǎn),設(shè)線段的中點(diǎn)為,使得在點(diǎn)處的切線與直線平行或重合,則說函數(shù)是“中值平衡函數(shù)”,切線叫做函數(shù)的“中值平衡切線”.
試判斷函數(shù)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)的“中值平衡切線”的條數(shù);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-.
(1)求函數(shù)的解析式.
(2)若方程f(x)=k有3個(gè)不同的根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若函數(shù)處的切線方程為,求實(shí)數(shù),的值;
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),是否存在實(shí)數(shù),使函數(shù)在上遞減,在上遞增?若存在,求出所有值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(I)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(II)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù), 其中,的導(dǎo)函數(shù).
(Ⅰ)若,求函數(shù)的解析式;
(Ⅱ)若,函數(shù)的兩個(gè)極值點(diǎn)為滿足. 設(shè), 試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)是實(shí)數(shù)集R上的奇函數(shù),且在R上為增函數(shù)。
(Ⅰ)求的值;
(Ⅱ)求恒成立時(shí)的實(shí)數(shù)t的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案