如圖所示,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).

(1)證明:B1C1⊥CE;
(2)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為.求線段AM的長.

解析試題分析:以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,(1)求出,,于是,所以
(2)設(shè),有.因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/74/1/1oe653.png" style="vertical-align:middle;" />平面,可取為平面的一個法向量,則的夾角的余弦值的絕對值即為直線與平面夾角的正弦值,由題目知這個正弦值為,即可列出一關(guān)于的方程,解方程求出的值,最后求出線段的長.
試題解析:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,

依題意得,,,
(1)證明:易得,,于是,所以.
(2),="(1,1,1)." 設(shè),0≤≤1,有
. 因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/74/1/1oe653.png" style="vertical-align:middle;" />平面,可取為平面的一個法向量.
設(shè)為直線與平面所成的角,則
==.
于是=,解得,所以.
考點(diǎn):1.空間中兩直線的位置關(guān)系;(2)用空間向量解決立體幾何問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知平面,是正三角形,AD=DEAB,且F是CD的中點(diǎn).

⑴求證:AF//平面BCE;
⑵求證:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱中,側(cè)面均為正方形,∠,點(diǎn)是棱的中點(diǎn).

(Ⅰ)求證:⊥平面
(Ⅱ)求證:平面;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知三棱錐的側(cè)棱、兩兩垂直,且,,的中點(diǎn).

(1)求點(diǎn)到面的距離;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面為菱形,的中點(diǎn).

(1)若,求證:平面平面
(2)點(diǎn)在線段上,,若平面平面,且,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中,,,的中點(diǎn),分別在線段上的動點(diǎn),且,把沿折起,如下圖所示,

(Ⅰ)求證:平面;
(Ⅱ)當(dāng)二面角為直二面角時,是否存在點(diǎn),使得直線與平面所成的角為,若存在求的長,若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在梯形中,,,平面平面,四邊形是矩形,,點(diǎn)在線段EF上.

(1)求異面直線所成的角;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

,,平面⊥平面,是線段上一點(diǎn),,

(Ⅰ)證明:⊥平面
(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面為直角梯形,,平面⊥底面,的中點(diǎn),是棱上的點(diǎn),,,

(Ⅰ)求證:平面⊥平面
(Ⅱ)若為棱的中點(diǎn),求異面直線所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案