如圖,已知平面,,是正三角形,AD=DEAB,且F是CD的中點.
⑴求證:AF//平面BCE;
⑵求證:平面BCE⊥平面CDE.
(1)詳見解析;⑵詳見解析.
解析試題分析:(1)要證AF//平面BCE就需要在平面BCE內找一條直線與AF平行.
取CE中點P,易證ABPF為平行四邊形,從而問題得證.
⑵證面面垂直,首先考慮評點哪條線垂直哪個面.
很容易得,AF⊥CD,故考慮證明AF⊥平面CDE.那么需要在平面CDE內再找一條直線與AF垂直.找哪一條呢? ∵DE⊥平面ACD, AF平面ACD,∴DE⊥AF,這樣便可使問題得證.
試題解析:(1)取CE中點P,連結FP、BP。
∵F為CD的中點,∴FP//DE,且FP= 2分
又AB//DE,且AB=∴AB//FP,且AB=FP,
∴ABPF為平行四邊形,∴AF//BP.
又∵AF平面BCE,BP平面BCE,∴AF//平面BCE. 6分
⑵∵△ACD為正三角形,∴AF⊥CD.
∵DE⊥平面ACD, AF平面ACD,
∴DE⊥AF
又AF⊥CD,CD∩DE=D,
∴AF⊥平面CDE. 8分
又BP//AF,∴BP⊥平面CDE。 10分
又∵BP平面BCE,
∴平面BCE⊥平面CDE. 12分
考點:空間直線與平面的位置關系.
科目:高中數(shù)學 來源: 題型:解答題
如圖,三棱錐P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一點,且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求異面直線AP與BC所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱中,,是棱上的一點,是的延長線與的延長線的交點,且∥平面。
(1)求證:;
(2)求二面角的平面角的余弦值;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上任一點.
(Ⅰ)求證:無論E點取在何處恒有;
(Ⅱ)設,當平面EDC平面SBC時,求的值;
(Ⅲ)在(Ⅱ)的條件下求二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱柱的底面是平行四邊形,且底面,,,°,點為中點,點為中點.
(Ⅰ)求證:平面平面;
(Ⅱ)設二面角的大小為,直線與平面所成的角為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥平面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(1)求異面直線B1C1與AC所成角的大小;
(2)若該直三棱柱ABC-A1B1C1的體積為,求點A到平面A1BC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,四棱柱ABCD-A1B1C1D1中,側棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明:B1C1⊥CE;
(2)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為.求線段AM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com