【題目】在平面直角坐標(biāo)系中,點(diǎn)在橢圓:上.若點(diǎn),,且.
(1)求橢圓的離心率;
(2)設(shè)橢圓的焦距為4,,是橢圓上不同的兩點(diǎn),線段的垂直平分線為直線,且直線不與軸重合.
①若點(diǎn),直線過點(diǎn),求直線的方程;
② 若直線過點(diǎn),且與軸的交點(diǎn)為,求點(diǎn)橫坐標(biāo)的取值范圍.
【答案】(1);(2)①.或.②..
【解析】
(1)由題意結(jié)合向量的坐標(biāo)運(yùn)算法則可得.則橢圓的離心率.
(2)①由題意可得橢圓的方程為,設(shè),計(jì)算可得中點(diǎn)為,因?yàn)橹本過點(diǎn),據(jù)此有.聯(lián)立方程可得斜率為1或,直線的方程為或.
②設(shè):,則直線的方程為:,所以.聯(lián)立直線方程與橢圓方程可得.結(jié)合直線過點(diǎn)和得到關(guān)于m的不等式,求解不等式可得點(diǎn)橫坐標(biāo)的取值范圍為.
(1)設(shè),
則,.
因?yàn)?/span>,
所以,得,
代入橢圓方程得.
因?yàn)?/span>,所以.
(2)①因?yàn)?/span>,所以,,
所以橢圓的方程為,
設(shè),則.
因?yàn)辄c(diǎn),所以中點(diǎn)為,
因?yàn)橹本過點(diǎn),直線不與軸重合,
所以,所以,化簡得.
將代入化簡得,
解得(舍去),或.
將代入得,
所以為,
所以斜率為1或,直線的斜率為-1或,
所以直線的方程為或.
②設(shè):,則直線的方程為:
,所以.
將直線的方程代入橢圓的方程,消去得.
設(shè),,中點(diǎn)為,
,代入直線的方程得,
代入直線的方程得.
又因?yàn)?/span>,
化得.
將代入上式得,解得,
所以,且,
所以.
綜上所述,點(diǎn)橫坐標(biāo)的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否在犯錯誤的概率不超過0.5%的前提下認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005] | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入12月以業(yè),在華北地區(qū)連續(xù)出現(xiàn)兩次重污染天氣的嚴(yán)峻形勢下,我省堅(jiān)持保民生,保藍(lán)天,各地嚴(yán)格落實(shí)機(jī)動車限行等一系列“管控令”,某市交通管理部門為了了解市民對“單雙號限行”的態(tài)度,隨機(jī)采訪了200名市民,將他們的意見和是否擁有私家車的情況進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表:
贊同限行 | 不贊同限行 | 合計(jì) | |
沒有私家車 | 90 | 20 | 110 |
有私家車 | 70 | 40 | 110 |
合計(jì) | 160 | 60 | 220 |
(1)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過的前提下認(rèn)為“對限行的態(tài)度與是否擁有私家車有關(guān)”;
(2)為了了解限行之后是否對交通擁堵、環(huán)境染污起到改善作用,從上述調(diào)查的不贊同限行的人員中按是否擁有私家車分層抽樣抽取6人,再從這6人中隨機(jī)抽出3名進(jìn)行電話回訪,求3人中至少有1人沒有私家車的概率.
附: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,)
(1)若,求函數(shù)的單調(diào)區(qū)間與極值;
(2)若在區(qū)間上至少存在一點(diǎn),使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是:( )
①設(shè)函數(shù)可導(dǎo),則;
②過曲線外一定點(diǎn)做該曲線的切線有且只有一條;
③已知做勻加速運(yùn)動的物體的運(yùn)動方程是米,則該物體在時刻秒的瞬時速度是米秒;
④一物體以速度(米/秒)做直線運(yùn)動,則它在到秒時間段內(nèi)的位移為米;
⑤已知可導(dǎo)函數(shù),對于任意時,是函數(shù)在上單調(diào)遞增的充要條件.
A. ①③B. ③④C. ②③⑤D. ③⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線與軸所圍成的區(qū)域是一塊等待開墾的土地,現(xiàn)計(jì)劃在該區(qū)域內(nèi)圍出一塊矩形地塊ABCD作為工業(yè)用地,其中A、B在拋物線上,C、D在軸上.已知工業(yè)用地每單位面積價值為元,其它的三個邊角地塊每單位面積價值元.
(1)求等待開墾土地的面積;
(2)如何確定點(diǎn)C的位置,才能使得整塊土地總價值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(東北三省四市教研聯(lián)合體2018屆高三第二次模擬考試)中國有個名句“運(yùn)籌帷幄之中,決勝千里之外.”其中的“籌”取意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來進(jìn)行計(jì)算.算籌是將幾寸長的小竹棍擺在下面上進(jìn)行運(yùn)算.算籌的擺放形式有縱橫兩種形式(如下圖所示).表示一個多位數(shù)時,像阿拉伯計(jì)數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列.但各位數(shù)碼的籌式要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位數(shù)用橫式表示.依此類推.例如3266用算籌表示就是,則8771用算籌可表示為
中國古代的算籌數(shù)碼
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)求過點(diǎn)和函數(shù)的圖像相切的直線方程;
(2)若對任意,有恒成立,求的取值范圍;
(3)若存在唯一的整數(shù),使得,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com