【題目】[2019·清遠(yuǎn)期末]一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測(cè)數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點(diǎn)圖如下:

溫度

20

25

30

35

產(chǎn)卵數(shù)/個(gè)

5

20

100

325

(1)根據(jù)散點(diǎn)圖判斷哪一個(gè)更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));

(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))

參考數(shù)據(jù):,,,,,,

5

20

100

325

1.61

3

4.61

5.78

【答案】(I)選擇更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型; (II); (III)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在 以下.

【解析】

(I)由于散點(diǎn)圖類似指數(shù)函數(shù)的圖像,由此選擇.(II)對(duì);兩邊取以為底底而得對(duì)數(shù),將非線性回歸的問題轉(zhuǎn)化為線性回歸的問題,利用回歸直線方程的計(jì)算公式計(jì)算出回歸直線方程,進(jìn)而化簡(jiǎn)為回歸曲線方程.(III),解指數(shù)不等式求得溫度的控制范圍.

(I)依散點(diǎn)圖可知,選擇更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型。

(II)因?yàn)?/span>,令,

所以可看成線性回歸

,

所以,

所以,

即,

(III)由

解得,

要使得產(chǎn)卵數(shù)不超過50,則溫度控制在 以下。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,正三角形PAC所在平面與等腰三角形ABC所在平面互相垂直,ABBC,OAC中點(diǎn),OHPCH.

(1)證明:PC⊥平面BOH;

(2)若,求二面角A-BH-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,設(shè)導(dǎo)函數(shù).

Ⅰ)設(shè),若恒成立,求的范圍;

Ⅱ)設(shè)函數(shù)的零點(diǎn)為函數(shù)的極小值點(diǎn)為,當(dāng)時(shí),求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,橢圓的左、右頂點(diǎn)分別為,是橢圓上一點(diǎn),記直線的斜率為、,且有.

1)求橢圓的方程;

2)若過點(diǎn)的直線與橢圓相交于不同兩點(diǎn),且滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ) 求曲線相鄰兩個(gè)對(duì)稱中心之間的距離;

(Ⅱ) 若函數(shù),上單調(diào)遞增, 求的最大值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知高中學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)具有線性相關(guān)關(guān)系,在一次考試中某班7名學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)?nèi)缦卤恚?/span>

數(shù)學(xué)成績(jī)

88

83

117

92

108

100

112

物理成績(jī)

94

91

108

96

104

101

106

1)求這7名學(xué)生的數(shù)學(xué)成績(jī)的極差和物理成績(jī)的平均數(shù);

2)求物理成績(jī)對(duì)數(shù)學(xué)成績(jī)的線性回歸方程;若某位學(xué)生的數(shù)學(xué)成績(jī)?yōu)?/span>110分,試預(yù)測(cè)他的物理成績(jī)是多少?

下列公式與數(shù)據(jù)可供參考:

用最小二乘法求線性回歸方程的系數(shù)公式:,;

,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)討論的單調(diào)性;

(II)當(dāng),是否存在實(shí)數(shù),使得,都有?若存在求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種型號(hào)的農(nóng)機(jī)具零配件,為了預(yù)測(cè)今年7月份該型號(hào)農(nóng)機(jī)具零配件的市場(chǎng)需求量,以合理安排生產(chǎn),工廠對(duì)本年度1月份至6月份該型號(hào)農(nóng)機(jī)具零配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)(單位:元)和銷售量(單位:千件)之間的6組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

銷售單價(jià)(元)

11.1

9.1

9.4

10.2

8.8

11.4

銷售量(千件)

2.5

3.1

3

2.8

3.2

2.4

1)根據(jù)16月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到0.01);

2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號(hào)農(nóng)機(jī)具零配件的生產(chǎn)成本為每件3元,那么工廠如何制定7月份的銷售單價(jià),才能使該月利潤(rùn)達(dá)到最大?(計(jì)算結(jié)果精確到0.1

參考公式:回歸直線方程,

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為數(shù)列的前n項(xiàng)和,且,當(dāng)時(shí),.

(I)證明:數(shù)列為等比數(shù)列;

(Ⅱ)記,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案