【題目】某超市從年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機抽取個,并按、、、、分組,得到頻率分布直方圖如圖,假設甲、乙兩種酸奶獨立銷售且日銷售量相互獨立.
(1)寫出頻率分布直方圖甲中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為、,試比較與的大;(只需寫出結論)
(2)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于箱且另一個不高于箱的概率;
(3)設表示在未來天內(nèi)甲種酸奶的日銷售量不高于箱的天數(shù),以日留住量落入各組的頻率為概率,求的分布列和數(shù)學期望.
【答案】(1),;(2);(3)分布列見解析,數(shù)學期望為.
【解析】
(1)由各小矩形面積和為,先求出,由頻率分布直方圖可看出,甲的銷售量比較分散,而乙較為集中,由此能比、的大。
(2)分兩種情況討論:甲種酸奶的銷售量高于箱,乙種酸奶的銷售量不高于箱;甲種酸奶的銷售量不高于箱,乙種酸奶的銷售量高于箱.然后利用獨立事件的概率乘法公式可計算出所求事件的概率;
(3)由題意得出,利用二項分布可得出隨機變量的分布列,并計算出隨機變量的數(shù)學期望.
(1)由各小矩形面積和為,得,解得,
由頻率分布直方圖可看出,甲的銷售量比較分散,而乙較為集中,主要集中在箱,故;
(2)設事件:在未來的某一天里,甲種酸奶的銷售量不高于箱;
事件:在未來的某一天里,乙種酸奶的銷售量不高于箱;
事件:在未來的某一天里,甲、乙兩種酸奶的銷售量恰好一個高于箱且另一個不高于箱.
則,,
;
(3)由題意可知,,,
,,
,
所以,隨機變量的分布列如下表所示:
隨機變量的數(shù)學期望為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:,動圓過定點且與圓相切,圓心的軌跡為曲線.
(1)求的方程;
(2)設斜率為1的直線交于,兩點,交軸于點,軸交于,兩點,若,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若項數(shù)為的單調(diào)增數(shù)列滿足:①;②對任意,存在使得;則稱數(shù)列具有性質(zhì).
(1)分別判斷數(shù)列1,3,4,7和1,2,3,5是否具有性質(zhì),并說明理由;
(2)若數(shù)列具有性質(zhì),且.
(i)證明數(shù)列的項數(shù);
(ii)求數(shù)列中所有項的和的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次期末數(shù)學測試中,唐老師任教班級學生的考試得分情況如表所示:
分數(shù)區(qū)間 | |||||
人數(shù) | 2 | 8 | 32 | 38 | 20 |
(1)根據(jù)上述表格,試估計唐老師所任教班級的學生在本次期末數(shù)學測試的平均成績;
(2)現(xiàn)從成績在中按照分數(shù)段,采取分層抽樣的方法隨機抽取5人,再在這5人中隨機抽取2人作小題得分分析,求恰有1人的成績在上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的方程為,以為極點,軸的正半軸為極軸建立極坐標系,曲線是圓心在極軸上且經(jīng)過極點的圓,射線與曲線交于點.
(1)求曲線的參數(shù)方程,的極坐標方程;
(2)若,是曲線上的兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】閱讀:
已知、,,求的最小值.
解法如下:,
當且僅當,即時取到等號,
則的最小值為.
應用上述解法,求解下列問題:
(1)已知,,求的最小值;
(2)已知,求函數(shù)的最小值;
(3)已知正數(shù)、、,,
求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正三棱柱中,所有棱長都是3,點D,E分別是線段和上的點,.
(1)試確定點E的位置,使得平面,并證明;
(2)若直線與平面所成角的正弦值為,求二面角的余弦值的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com