【題目】設(shè)函數(shù)f(x),若對任意x1(,0),總存在x2使得,則實(shí)數(shù)a的范圍 _____

【答案】

【解析】

由題意可得:,分類討論a>0,a=0,a<0,結(jié)合導(dǎo)數(shù)求得最小值,解不等式即可得到所求范圍.

若對任意x1∈(,0),總存在x2使得,即.

當(dāng)a≠0時(shí),當(dāng)x時(shí),ax20.

當(dāng)a0時(shí),f(x)(,0)上的值域?yàn)?/span>(0,+∞),滿足要求;

當(dāng)a<0時(shí),f(x1)minf()0,而f(x2)>0恒成立,所以不可能有f(x2)≤f(x1);

當(dāng)0<a時(shí),f(x2)minf)=0,而f(x1)≥0恒成立,滿足要求;

當(dāng)a>時(shí),設(shè)g(x)ax2,則g′(x)=-2ax

易得g(x)上遞增,在上遞減,在(2,)單調(diào)遞減

所以,

所以

綜上:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市從年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取個(gè),并按、、、、分組,得到頻率分布直方圖如圖,假設(shè)甲、乙兩種酸奶獨(dú)立銷售且日銷售量相互獨(dú)立.

1)寫出頻率分布直方圖甲中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為、,試比較的大小;(只需寫出結(jié)論)

2)估計(jì)在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個(gè)高于箱且另一個(gè)不高于箱的概率;

3)設(shè)表示在未來天內(nèi)甲種酸奶的日銷售量不高于箱的天數(shù),以日留住量落入各組的頻率為概率,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已如橢圓C:的兩個(gè)焦點(diǎn)與其中一個(gè)頂點(diǎn)構(gòu)成一個(gè)斜邊長為4的等腰直角三角形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)動直線l交橢圓CP,Q兩點(diǎn),直線OP,OQ的斜率分別為kk.,求證OPQ的面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓b0〕與拋物線有共同的焦點(diǎn)F,且兩曲線在第一象限的交點(diǎn)為M,滿足.

1)求橢圓的方程;

2)過點(diǎn),斜率為的直線與橢圓交于兩點(diǎn),設(shè),假設(shè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年7曰1日至3日,世界新能源汽車大會在海南博鰲召開,大會著眼于全球汽車產(chǎn)業(yè)的轉(zhuǎn)型升級和生態(tài)環(huán)境的持續(xù)改善.某汽車公司順應(yīng)時(shí)代潮流,最新研發(fā)了一款新能源汽車,并在出廠前對100輛汽車進(jìn)行了單次最大續(xù)航里程(理論上是指新能源汽車所裝載的燃料或電池所能夠提供給車行駛的最遠(yuǎn)里程)的測試.現(xiàn)對測試數(shù)據(jù)進(jìn)行分析,得到如下的頻率分布直方圖:

(1)估計(jì)這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).

(2)根據(jù)大量的汽車測試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問中樣本標(biāo)準(zhǔn)差的近似值為50.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.

參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布,則,,.

(3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進(jìn),若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券.已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第50格.遙控車開始在第0格,客戶每擲一次硬幣,遙控車車向前移動一次,若擲出正面,遙控車向前移動一格(從),若擲出反面,遙控車向前移動兩格(從),直到遙控車移到第49格(勝利大本營)或第50格(失敗大本營)時(shí),游戲結(jié)束,設(shè)遙控車移到第n格的概率為,試說明是等比數(shù)列,并解釋此方案能否成功吸引顧客購買該款新能源汽車.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,昆明加大了特色農(nóng)業(yè)建設(shè),其中花卉產(chǎn)業(yè)是重要組成部分.昆明斗南毗鄰滇池東岸,是著名的花都,有全國10支鮮花7支產(chǎn)自斗南之說,享有金斗南的美譽(yù).為進(jìn)一步了解鮮花品種的銷售情況,現(xiàn)隨機(jī)抽取甲、乙兩戶斗南花農(nóng),對其連續(xù)5日的玫瑰花日銷售情況進(jìn)行跟蹤調(diào)查,將日銷售量作為樣本繪制成莖葉圖如下,單位:扎(20支/扎).

1)求甲、乙兩戶花農(nóng)連續(xù)5日的日均銷售量,并比較兩戶花農(nóng)連續(xù)5日銷售量的穩(wěn)定性;

2)從兩戶花農(nóng)連續(xù)5日的銷售量中各隨機(jī)抽取一個(gè),求甲的銷售量比乙的銷售量高的概率·

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知橢圓,若圓的一條切線與橢圓有兩個(gè)交點(diǎn),且.

1)求圓的方程;

2)已知橢圓的上頂點(diǎn)為,點(diǎn)在圓上,直線與橢圓相交于另一點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

1)求的值;

2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中《方田》章有弧田面積計(jì)算問題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公式為:弧田面積(弦乘矢+矢乘矢),弧田是由圓弧(簡稱為弧田的。┖鸵詧A弧的端點(diǎn)為端點(diǎn)的線段(簡稱 (弧田的弦)圍成的平面圖形,公式中指的是弧田的弦長,等于弧田的弧所在圓的半徑與圓心到弧田的弦的距離之差.現(xiàn)有一弧田,其弦長等于,其弧所在圓為圓,若用上述弧田面積計(jì)算公式計(jì)算得該弧田的面積為,則

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案