【題目】符號(hào)表示不大于的最大整數(shù)(,例如:

1)已知,分別求兩方程的解集;

2)設(shè)方程的解集為,集合,若,求的取值范圍.

3)在(2)的條件下,集合,是否存在實(shí)數(shù),,若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

【答案】123

【解析】

1)根據(jù)定義直接寫出;(2)先求解出集合中表示元素的范圍,再根據(jù)求解的范圍;(3)由可知,根據(jù)子集關(guān)系求解的范圍.

1)因?yàn)?/span>表示不大于的最大整數(shù),時(shí),解得:,所以 ;時(shí),解得:,所以;

2)因?yàn)?/span>,所以,根據(jù)絕對(duì)值不等式的幾何意義解得: ,又;

當(dāng)時(shí),,所以成立;

當(dāng)時(shí), ,若,則有:,解得;

當(dāng)時(shí),,若,則有:,解得;綜上:;

3)因?yàn)?/span>,所以,且,所以設(shè)集合的解集為:,則有:,所以,解得:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年6月14日,第二十一屆世界杯尼球賽在俄羅斯拉開了帷幕,某大學(xué)在二年級(jí)作了問(wèn)卷調(diào)查,從該校二年級(jí)學(xué)生中抽取了人進(jìn)行調(diào)查,其中女生中對(duì)足球運(yùn)動(dòng)有興趣的占,而男生有人表示對(duì)足球運(yùn)動(dòng)沒(méi)有興趣.

(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)足球是否有興趣與性別有關(guān)”?

有興趣

沒(méi)有興趣

合計(jì)

合計(jì)

(2)若將頻率視為概率,現(xiàn)再?gòu)脑撔6昙?jí)全體學(xué)生中,采用隨機(jī)抽樣的方法每飲抽取名學(xué)生,抽取次,記被抽取的名學(xué)生中對(duì)足球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一款手機(jī),每部購(gòu)買費(fèi)用是5000元,每年網(wǎng)絡(luò)費(fèi)和電話費(fèi)共需1000元;每部手機(jī)第一年不需維修,第二年維修費(fèi)用為100元,以后每一年的維修費(fèi)用均比上一年增加100.設(shè)該款手機(jī)每部使用年共需維修費(fèi)用元,總費(fèi)用.(總費(fèi)用購(gòu)買費(fèi)用網(wǎng)絡(luò)費(fèi)和電話費(fèi)維修費(fèi)用)

1)求函數(shù)、的表達(dá)式:

2)這款手機(jī)每部使用多少年時(shí),它的年平均費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1 +y2=1,橢圓C2以C1的長(zhǎng)軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上, =2 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心為的圓過(guò)點(diǎn),且與直線相切于點(diǎn)。

1)求圓的方程;

2)已知點(diǎn),且對(duì)于圓上任一點(diǎn),線段上存在異于點(diǎn)的一點(diǎn),使得為常數(shù)),試判斷使的面積等于4的點(diǎn)有幾個(gè),并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】足球,有“世界第一運(yùn)動(dòng)的美譽(yù),是全球體育界最具影響力的單項(xiàng)體育運(yùn)動(dòng)之一.足球傳球是足球運(yùn)動(dòng)技術(shù)之一,是比賽中組織進(jìn)攻、組織戰(zhàn)術(shù)配合和進(jìn)行射門的主要手段.足球截球也是足球運(yùn)動(dòng)技術(shù)的一種,是將對(duì)方控制或傳出的球占為己有,或破壞對(duì)方對(duì)球的控制的技術(shù),是比賽中由守轉(zhuǎn)攻的主要手段.這兩種運(yùn)動(dòng)技術(shù)都需要球運(yùn)動(dòng)員的正確判斷和選擇.現(xiàn)有甲、乙兩隊(duì)進(jìn)行足球友誼賽,A、B兩名運(yùn)動(dòng)員是甲隊(duì)隊(duì)員,C是乙隊(duì)隊(duì)員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現(xiàn)A沿北偏西60°方向水平傳球,球速為10m/s,同時(shí)B沿北偏西30°方向以10m/s的速度前往接球,C同時(shí)也以10m/s的速度前去截球.假設(shè)球與B、C都在同一平面運(yùn)動(dòng),且均保持勻速直線運(yùn)動(dòng).

(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請(qǐng)說(shuō)明理由.

(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);

2)若函數(shù)處取得極值,且對(duì)任意, 恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對(duì)他們的射箭水平進(jìn)行測(cè)試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;

(2)比較兩個(gè)人的成績(jī),然后決定選擇哪名學(xué)生參加射箭比賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案