【題目】有一款手機(jī),每部購買費(fèi)用是5000元,每年網(wǎng)絡(luò)費(fèi)和電話費(fèi)共需1000元;每部手機(jī)第一年不需維修,第二年維修費(fèi)用為100元,以后每一年的維修費(fèi)用均比上一年增加100.設(shè)該款手機(jī)每部使用年共需維修費(fèi)用元,總費(fèi)用.(總費(fèi)用購買費(fèi)用網(wǎng)絡(luò)費(fèi)和電話費(fèi)維修費(fèi)用)

1)求函數(shù)、的表達(dá)式:

2)這款手機(jī)每部使用多少年時,它的年平均費(fèi)用最少?

【答案】(1),;(2)這款手機(jī)使用年時它的年平均費(fèi)用最少

【解析】

1)第年的維修費(fèi)用為,根據(jù)等差數(shù)列求和公式可求得;將加上購買費(fèi)用和年的網(wǎng)絡(luò)費(fèi)和電話費(fèi)總額即可得到;(2)平均費(fèi)用,利用基本不等式可求得最小值,根據(jù)取等條件可求得的取值.

1

2)設(shè)每部手機(jī)使用年的平均費(fèi)用為

當(dāng),即時,

這款手機(jī)使用年時它的年平均費(fèi)用最少

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項(xiàng)目.經(jīng)測算該項(xiàng)目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為元,若該項(xiàng)目不獲利,政府將給予補(bǔ)貼.

1)當(dāng)時,判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?

2)該項(xiàng)目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱的底面是菱形,平面,,,,點(diǎn)的中點(diǎn).

(1)求證:直線平面

(2)求證:平面;

(3)求直線與平面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?

注:,其中.

(2)若江西參賽選手共80人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);

(3)如果在優(yōu)秀等級的選手中取4名,在良好等級的選手中取2名,再從這6人中任選3人組成一個比賽團(tuán)隊,求所選團(tuán)隊中有2名選手的等級為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為正整數(shù),集合),對于集合中的任意元素,記.

1)當(dāng)時,若,,求的值;

2)當(dāng)時,設(shè)的子集,且滿足:對于中的任意元素、,當(dāng)、相同時,是奇數(shù),當(dāng)、不同時,是偶數(shù),求集合中元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項(xiàng)公式是,若將數(shù)列中的項(xiàng)從小到大按如下方式分組:第一組:,第二組:,第三組:,…,則2018位于第________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于, 兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】符號表示不大于的最大整數(shù)(,例如:

1)已知,分別求兩方程的解集;

2)設(shè)方程的解集為,集合,若,求的取值范圍.

3)在(2)的條件下,集合,是否存在實(shí)數(shù),,若存在,請求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),記集合;

(1)設(shè),,求.

(2)設(shè),,若,求實(shí)數(shù)a的取值范圍.

(3)設(shè).如果求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案