【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.直線1的極坐標(biāo)方程為.
(Ⅰ)求C的普通方程和l的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與x軸和y軸的交點(diǎn)分別為A,B,點(diǎn)M在曲線C上,求△MAB面積的最大值.
【答案】(Ⅰ)C的普通方程x2+y2=16, l的直角坐標(biāo)方程;(Ⅱ)
【解析】
(Ⅰ)利用同角三角函數(shù)的平方關(guān)系消去α可得C的普通方程,由代入極坐標(biāo)方程可得l的直角坐標(biāo)方程;
(Ⅱ)先求得A,B的坐標(biāo),得|AB|,設(shè)M(4cosα,4sinα),求點(diǎn)到直線距離,再求面積,利用三角函數(shù)求最值即可.
(Ⅰ)由(α為參數(shù))消去參數(shù)α可得曲線C的普通方程為:x2+y2=16.
由得,
因?yàn)?/span>,所以直線l的直角坐標(biāo)方程為:.
(Ⅱ)由(Ⅰ)得 ,所以,
設(shè)M(4cosα,4sinα),則點(diǎn)M到直線AB的距離為,
當(dāng)時(shí),dmax=6.
故△MAB的面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐詩是中國文學(xué)的瑰寶.為了研究計(jì)算機(jī)上唐詩分類工作中檢索關(guān)鍵字的選取,某研究人員將唐詩分成7大類別,并從《全唐詩》48900多篇唐詩中隨機(jī)抽取了500篇,統(tǒng)計(jì)了每個類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:
愛情婚姻 | 詠史懷古 | 邊塞戰(zhàn)爭 | 山水田園 | 交游送別 | 羈旅思鄉(xiāng) | 其他 | 總計(jì) | |
篇數(shù) | 100 | 64 | 55 | 99 | 91 | 73 | 18 | 500 |
含“山”字的篇數(shù) | 51 | 48 | 21 | 69 | 48 | 30 | 4 | 271 |
含“簾”字的篇數(shù) | 21 | 2 | 0 | 0 | 7 | 3 | 5 | 38 |
含“花”字的篇數(shù) | 60 | 6 | 14 | 17 | 32 | 28 | 3 | 160 |
(1)根據(jù)上表判斷,若從《全唐詩》含“山”字的唐詩中隨機(jī)抽取一篇,則它屬于哪個類別的可能性最大,屬于哪個類別的可能性最小,并分別估計(jì)該唐詩屬于這兩個類別的概率;
(2)已知檢索關(guān)鍵字的選取規(guī)則為:
①若有超過95%的把握判斷“某字”與“某類別”有關(guān)系,則“某字”為“某類別”的關(guān)鍵字;
②若“某字”被選為“某類別”關(guān)鍵字,則由其對應(yīng)列聯(lián)表得到的的觀測值越大,排名就越靠前;
設(shè)“山”“簾”“花”和“愛情婚姻”對應(yīng)的觀測值分別為,,.已知,,請完成下面列聯(lián)表,并從上述三個字中選出“愛情婚姻”類別的關(guān)鍵字并排名.
屬于“愛情婚姻”類 | 不屬于“愛情婚姻”類 | 總計(jì) | |
含“花”字的篇數(shù) | |||
不含“花”的篇數(shù) | |||
總計(jì) |
附:,其中.
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高三年級期末考試的學(xué)生中抽出60名學(xué)生,其成績(均為整數(shù))的頻率分布直方圖如圖所示:
(1)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(2)按分層抽樣從成績是80分以上(包括80分)的學(xué)生中選取6人,再從這6人中選取兩人作為代表參加交流活動,求他們在不同分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)3個不同的球放入5個不同的盒子,每個盒子至多放1個球,共有多少種放法?
(2)3個不同的球放入5個不同的盒子,每個盒子放球量不限,共有多少種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京、張家口2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標(biāo)配套活動的相關(guān)代言,決定對旗下的某商品進(jìn)行一次評估,該商品原來每件售價(jià)為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到元.公司擬投入萬作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入萬元作為浮動宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)減區(qū)間;
(2)當(dāng)在區(qū)間上變化時(shí),求的極小值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:在左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),若是面積為的等邊三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知,是橢圓上的兩點(diǎn),且,求使的面積最大時(shí)直線的方程(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】語音交互是人工智能的方向之一,現(xiàn)在市場上流行多種可實(shí)現(xiàn)語音交互的智能音箱.主要代表有小米公司的“小愛同學(xué)”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過語音交互滿足人們的部分需求.某經(jīng)銷商為了了解不同智能音箱與其購買者性別之間的關(guān)聯(lián)程度,從某地區(qū)隨機(jī)抽取了100名購買“小愛同學(xué)”和100名購買“天貓精靈”的人,具體數(shù)據(jù)如下:
“小愛同學(xué)”智能音箱 | “天貓精靈”智能音箱 | 合計(jì) | |
男 | 45 | 60 | 105 |
女 | 55 | 40 | 95 |
合計(jì) | 100 | 100 | 200 |
(1)若該地區(qū)共有13000人購買了“小愛同學(xué)”,有12000人購買了“天貓精靈”,試估計(jì)該地區(qū)購買“小愛同學(xué)”的女性比購買“天貓精靈”的女性多多少人?
(2)根據(jù)列聯(lián)表,能否有95%的把握認(rèn)為購買“小愛同學(xué)”、“天貓精靈”與性別有關(guān)?
附:
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com