19.f(sinx)=cos14x,則f($\frac{1}{2}$)=$\frac{1}{2}$.

分析 由已知中f(sinx)=cos14x,結(jié)合sin$\frac{π}{6}$=$\frac{1}{2}$,代入可得答案.

解答 解:∵sin$\frac{π}{6}$=$\frac{1}{2}$,f(sinx)=cos14x,
∴f($\frac{1}{2}$)=cos$\frac{14π}{6}$=cos$\frac{π}{3}$=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$

點評 本題考查的知識點是函數(shù)求值,特殊角的三角函數(shù),難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.設(shè)f(x)=$\frac{1}{1+{x}^{2}}$+x3${∫}_{0}^{1}$f(x)dx,則${∫}_{0}^{1}$f(x)dx=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知方程$\frac{{x}^{2}}{2-k}$+$\frac{{y}^{2}}{k-1}$=1表示雙曲線,求k的取值范圍,并寫出焦點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知等邊三角形ABC的邊長為2,點D,E分別為AB,BC的中點,且AE∩CD=F,點H為邊AC上的一點,且$\overrightarrow{AH}$=$λ\overrightarrow{AC}$(0<λ<1),當$\overrightarrow{HF}$•$\overrightarrow{HD}$=1時,實數(shù)λ=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知sinα=$\frac{5}{13}$,cosβ=$-\frac{3}{5}$,其中α為第一象限角,β為第三象限角,求sin($\frac{π}{4}+α$)和cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知點M的坐標是(1,1),F(xiàn)1是橢圓$\frac{x^2}{9}+\frac{y^2}{5}$=1的左焦點,P是橢圓上的動點,則|PF1|+|PM|的取值范圍是[6-$\sqrt{2}$,6+$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在側(cè)棱長為a的正三棱錐S-ABC中,∠BSA=$\frac{π}{2}$,P為△ABC內(nèi)一動點,且P到三個側(cè)面SAB,SBC,SCA的距離為d1,d2,d3.若d1+d2=d3,則點P形成曲線的長度為$\frac{\sqrt{2}}{2}$a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),在(-∞,0]上單調(diào)遞減,且有f(2)=0,則使得(x-1)•f(log3x)<0的x的范圍為( 。
A.(1,2)B.$(0,\frac{1}{9})∪(9,+∞)$C.$(0,\frac{1}{9})∪(1,9)$D.$(\frac{1}{9},9)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列函數(shù)在區(qū)間(0,4)上是增函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=($\frac{1}{3}$)xC.y=x${\;}^{\frac{1}{2}}$D.y=x2-2x-15

查看答案和解析>>

同步練習冊答案