15.若等差數(shù)列的第一、二、三項依次是$\frac{1}{x+1}$、$\frac{5}{6x}$、$\frac{1}{x}$則數(shù)列的公差d是(  )
A.$\frac{1}{12}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 由前三項組成等差數(shù)列可得$\frac{1}{x+1}+\frac{1}{x}=2•\frac{5}{6x}$,解出x,然后將第二項減去第一項得出d.

解答 解:$\frac{1}{x+1}+\frac{1}{x}=2•\frac{5}{6x}$
解得x=2.
所以此數(shù)列的前三項分別為$\frac{1}{3}$,$\frac{5}{12}$,$\frac{1}{2}$.
∴d=$\frac{1}{12}$.
故選:A.

點評 本題考查了等差數(shù)列的性質(zhì),是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左準線為l,左、右焦點分別為F′,F(xiàn),點A,B在橢圓上,AF′∥BF,∠AF′F=60°,若AF′=2BF,則橢圓的離心率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.sin$\frac{4}{3}$π•cos$\frac{6}{5}π$•tan(-$\frac{4}{3}π$)=-$\frac{3}{2}$cos$\frac{π}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知:數(shù)列{an},{bn}滿足$\left\{\begin{array}{l}{{a}_{n}{=\frac{2}{3}a}_{n-1}{+\frac{1}{3}b}_{n-1}}\\{_{n}{=\frac{1}{3}a}_{n-1}{+\frac{2}{3}b}_{n-1}}\end{array}\right.$ (n≥2)且a1=10,b1=8,求an,bn的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.直線l:y=x+m與橢圓$\frac{{x}^{2}}{4}$+y2=1交于A、B兩點,弦長AB為$\frac{4\sqrt{6}}{5}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.經(jīng)過半小時,分針轉(zhuǎn)過了-π弧度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.己知圓C:(x-2)2+(y-4)2=1.P(x,y)為圓C上一點,則x2+y2的取值范圍是[21-4$\sqrt{5}$,21+4$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求下列函數(shù)定義域:
(1)y=$\sqrt{1-2sin(x+\frac{π}{4})}$;
(2)y=lg($\sqrt{3}$-tanx).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.過橢圓$\frac{x^2}{2}+{y^2}=1$的右焦點的直線交橢圓于A,B兩點,則弦AB的最小值為$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案